tait

communications

-

TaskBuilder
Tutorial and Reference Manual

MBC-00013-07 - Issue 07 - August 2024

www.taitcommunications.com

Contact Information

Tait Communications

Corporate Head Office

Tait International Limited
P.O. Box 1645
Christchurch

New Zealand

Imported into the EU by: Imported into the UK by:
Tait Communications GmbH Tait Europe Limited
Strozzigasse 10/14 Unit A, Buckingway Business Park

Vienna 1080 Anderson Road
Austtia Swavesey
Cambridge, CB24 4UQ
United Kingdom

For the address and telephone number of regional offices, refer to
our website: www.taitcommunications.com

Copyright and Trademarks

All information contained in this document is the property of Tait
International Limited. All rights reserved. This document may not, in
whole or in part, be copied, photocopied, reproduced, translated,
stored, or reduced to any electronic medium or machine-readable
form, without prior written permission from Tait International
Limited.

The word TAIT, TAITNET and the TAIT logo are trademarks of
Tait International Limited.

All trade names referenced ate the service mark, trademark or
registered trademark of the respective manufacturers.

By using a Tait product you are agreeing to be bound by the terms of
the Tait Software Licence Agreement.Please read the Tait Software
Licence Agreement carefully before using this Tait product. If you do
not agree to the terms of the Tait Software Licence Agreement, do
not use the Tait Product. The full agreement is available at
www.taitcommunications.com/our-tesources/legal#Tait_Software_

Licence_Agreement

Disclaimer

There are no warranties extended or granted by this document. Tait
International Limited accepts no responsibility for damage arising
from use of the information contained in the document or of the
equipment and software it describes. It is the responsibility of the
user to ensure that use of such information, equipment and software
complies with the laws, rules and regulations of the applicable
jutisdictions.

Enquiries and Comments

If you have any enquiries regarding this document, or any comments,
suggestions and notifications of errors, please contact your regional
Tait office.

Updates of Manual and Equipment

In the interests of improving the performance, reliability or servicing
of the equipment, Tait International Limited reserves the right to
update the equipment or this document or both without prior notice.

© Tait International Ltd - August 2024

Intellectual Property Rights

This product may be protected by one or more patents or designs of
Tait International Limited together with their international equi-
valents, pending patent or design applications, and registered trade
marks, for a complete list please check
www.taitcommunications.com/our-resources/legal#Intellectual

Property

The AMBE+2™ voice coding Technology embodied in this product
is protected by intellectual property rights including patent rights,
copyrights and trade secrets of Digital Voice Systems, Inc. This voice
coding Technology is licensed solely for use within this
Communications Equipment. The user of this Technology is
explicitly prohibited from attempting to decompile, reverse engineet,
or disassemble the Object Code, or in any other way convert the
Object Code into a human-readable form.

Environmental Responsibilities

Tait International Limited is an environmentally

responsible company which supports waste minimization,

material recovery and restrictions in the use of hazardous

materials. The European Union’s Waste Electrical and
B Fccironic Equipment (WEEE) Directive and UK WEEE
Regulation 2013 requites that this product be disposed of sepatately
from the general waste stream when its service life is over. For more
information about how to dispose of your unwanted Tait product,
visit the Tait WEEE website at www.taitcommunications.com/our-
resources/compliance#WEEE. Please be environmentally
responsible and dispose through the original supplier, or contact Tait
International Limited.

Tait will comply with environmental requirements in other markets
as they are introduced.

https://www.taitradio.com/our-resources/legal#Tait_Software_Licence_Agreement
https://www.taitradio.com/our-resources/legal#Tait_Software_Licence_Agreement
https://www.taitradio.com/our-resources/legal#Intellectual_Property
https://www.taitradio.com/our-resources/legal#Intellectual_Property
https://www.taitcommunications.com/our-resources/compliance#WEEE
https://www.taitcommunications.com/our-resources/compliance#WEEE

Contents

Contact Information ... 2
CONteNtS . 3
Preface ... 7
Scope of Manual ... 7
New inthis Release 7
Al S 7
Associated Documentation ... 7
Publication Record ... 8
Tutorial Section ... 9
1 Getting Started 10
1.1 Introducing TaskBuilder 10
1.2 TaskBuilder Feature License 10
1.3 Running a TaskBuilder Program 10
1.4 Monitoring TaskBuilder Execution ... 12
1.5 Trace ACHIONS ... 13
1.6 Troubleshooting 14
2 Digital Inputs and OULPULS ... 15
2.1 Digital /O States ... 15
2.2 UsingaTimerto Togglethe Output 16
2.3 Toggle an Output Only When Digital Input4isLow ... 17
3 Set Channel on Start-Up ... 20
Bl EXAMIPIE 20
4 Select a Channel Using Digital Inputs 23
4.1 Using Two Inputs to Select Two Channels 23
4.2 Composite States 24
4.3 Using Two Inputs to Select Four Channels ... 24
4.4 Debouncingthe Switch Input ... 25
4.5 More on Composite States ... 26

© Tait International Ltd - August 2024 3

4.6 State Diagrams ... 26
5 Drive a Digital Output Given an Alarm Condition ... 27
5.1 Light a Lamp When the Base Station Front Panelis Absent ... 27
5.2 P25 M or Alarmm 28
5.3 Raisinga Custom Alarm 29
D4 SUMIMIANY 29
6 Select Squelch Mode Using Digital Inputs 30
6.1 rx-squelch-mode 30
0.2 IX-gate-State ... 30
7 Select Tx Key Using Digital Inputs ... 32
7.1 tX-Key-operation 32
7.2 tX-Key-state ... 32
8 Transmit Lockout 33
9 Call Profiles and Tone Remote 36
9.1 Tone Remote INpUL ... 36
9.2 CallProfiles ... 36
9.3 tone-remote-key-operation ... 38
9.4 tone-remote-Key-State 38
10 Signal Path States 39
101 IX-0peration ... 39
10,2 IX-0PEIrat ON L 39
11 High Availability Repeater 40
111 Requirements . . 40
T11.2 Problem LOgIC ... 40
11.3 Primary Repeater Definitions, Statesand Logic ... 43
11.4 Backup Repeater Definitions, Statesand Logic ... 47
12 Function Code Variables 50
13 Subaudible Signals 51

© Tait International Ltd - August 2024 4

14 TX GeNeIalOrS . 52

15 Good TaskBuilder Style ... 55
Reference Section 56
16 TaskBuilder Language ... 57
16.1 Syntax Highlighting ... 57
16,2 NAMES 57
TB.3 KOYWOIAS ..o 57
16.4 COMMENIS . 57
16.5 AcCtive Variables 58
16.6 Composite Variables 58
16.7 TimerVariables ... 59
16.8 CounterVariables ... 59
16.9 Standard Variables ... 62
16.10 TaskBuilder RUIES ... 62
6.1 BVeN S 63
16.12 State Entry Events . . 63
16. 18 ACHONS 63
16.14 Language Design Goals ...l 65
17 TaskBuilder Grammar ... 66
18 TaskBuilder Inputs and Actions ... 69
18.1 TaskBuilder Standard Variables ... 69
18.2 Table of TaskBuilder Standard Variables ... 69
19 TaskBuilder Alarm Names ... 75
20 Specifications and Limits 79
21 TaskBuilder Comparison With Task Manager ... 80
21.1 Comparisons With Task Manager ... 80
21.2 General EIBMENTS ... 80
21.3 TaskManager INnputs ... 81
21.4 TaskManager Outputs 84

© Tait International Ltd - August 2024 5

22 Change HiStOry e 87

Release 3.65 87
Release 3.60 87
Release 3.55 . 87
Release 3,30 88
Release 3,28 | 88
Release 3.20 88

© Tait International Ltd - August 2024 6

Preface

Scope of Manual

TaskBuilder allows the system designer to create rules that respond to base station conditions
and events, and control base station operation. Examples of use include: select a channel
based upon digital input states, drive a metallic hardware output on a defined alarm condition,
and lock out the transmitter after a defined transmission time.

This manual introduces TaskBuilder through examples with explanations and provides a
complete language reference.

Itis intended to assist those who are responsible for designing, commissioning and maintaining
systems. See Associated Documentation below below for more specific information on base
station configuration.

New in this Release

Variables for control over generating a coverage test signal. Note that these new variables are
only supported by Series 2 reciters.

Other improvements, such as a counter, and a Clear button for the trace viewer.

See Change History on page 87 for a complete description of all changes to TaskBuilder.

Alerts

This alert is used to highlight significant information that may be required to ensure
that you perform procedures correctly, or to draw your attention to ways of doing
things that can improve your efficiency or effectiveness.

Associated Documentation

The following associated documentation for this product is available on the Tait Partner Portal
website (https://partnerinfo.taitcommunications.com).

e TB9400 Installation and Operation Manual (MBC-00001-xx)
e TB9400 Specifications Manual (MBC-00002-xx)
e TB9300 Installation and Operation Manual (MBC-00008-xx)
e TB9300 Specifications Manual (MBC-00009-xx)
e TB7300 Installation and Operation Manual (MBD-00001-xx)

© Tait International Ltd - August 2024 7

* TB7300 Specifications Manual (MBD-00002-xx)
¢ DMR Channel Group System Manual (MNB-00010-xx)
¢ P25 and AS-IP Channel Group System Manual (MND-00002-xx)

The characters xx represent the latest issue number of the documentation.

Publication Record

Issue Publication Description
Date P
Series 2 reciter standard variables added:
e counter
e function-code-receive
e function-code-send
7 August 2024 e rx-subaudible-detector
e carrier-tx—-generator
¢ fm-tx-generator
e p25-phasel-tx-generator
Clear button added to Monitor > TaskBuilder.
Add tx-operation, rx-operation, rx-gate-state,
6 June 2024 tx—key—opeFation, tx-key-state, tone-remote-
key-operation, tone-remote-key-stateand rx-
squelch-mode standard variables.
December , ,
5 2023 Add tone-remote and call-profile standard variables
4 August 2022 Corporate website domain update
3 October 2021 | Updated with v3.25 content
2 April 2021 Updated with v3.20 content
1 March 2021 First release. V3.15

© Tait International Ltd - August 2024

Tutorial Section

This section of the manual contains the following:

Getting Started

Digital Inputs and Outputs

Set Channel on Start-Up

Select a Channel Using Digital Inputs
Drive a Digital Output Given an Alarm Condition
Select Squelch Mode Using Digital Inputs
Select Tx Key Using Digital Inputs
Transmit Lockout

Call Profiles and Tone Remote

Signal Path States

High Availability Repeater

Function Code Variables

Subaudible Signals

Tx Generators

Good TaskBuilder Style

© Tait International Ltd - August 2024

Getting Started

1.1

1.2

1.3

This chapter introduces TaskBuilder and provides a basic explanation of how to work with
TaskBuilder programs.

Introducing TaskBuilder

TaskBuilder provides a way to control base station operation.

TaskBuilder allows the base station to:

e respond to alarms
* raise and clear custom alarms
¢ respond to digital inputs
* sense base station Tx
 activate digital outputs
¢ change the base station channel
TaskBuilder programs specify actions to take when given conditions are true and when

specified events occur. Here is an example that sets the channel when the base station goes
online:

// TaskBuilder Example 1
when: operation.running then: channel => 2

Double slash (//) denotes a comment. Comments can appear on a line following TaskBuilder
statements, or on a line by themselves. The TaskBuilder compiler ignores comments, so you
can use them freely to remind yourself what the program is supposed to do.

TaskBuilder Feature License

To use TaskBuilder you must have a TBAS073 TaskBuilder License. Contact Tait for more
information.

Running a TaskBuilder Program

The base station WebUI has two pages that allow you to control the operation of TaskBuilder
and monitor its execution. See Monitoring TaskBuilder Execution on page 12 for information
about monitoring.

The Tools > TaskBuilder page allows you to manage TaskBuilder programs, including the
following:

« display TaskBuilder status

 start and stop TaskBuilder execution

© Tait International Ltd - August 2024

10

» choose whether TaskBuilder should run when the base station goes online
« display the current TaskBuilder program text

 edit the TaskBuilder program

 display program errors, if any are present

e read a TaskBuilder program from your computer

« write a TaskBuilder program to your computer

 revert to the last working TaskBuilder program if the current TaskBuilder program text
contains errors

System Status: & Analog conventional Online TaskBuilder: # Running
Monitor i
TaskBuilder
4 Identi
o & TaskBuilder
Configure Operation
Status Running
ad Diagnose N
B2 piag Start TaskBuilder when going online [[]
S Program text

Status Good

Tools

Settings
TaskBuilder
Encryption Keys
Files

1. when:operation.running then: trace: "Hello World!"™

Firmware

Save] I Upload I [Duwnluad] [Revert

1.31 Running Your First TaskBuilder Program

In this exercise, you will run the following basic example on the Base Station and observe the
result.

// TaskBuilder Example 1
when: operation.running then: channel => 2
1. Setup channel 2 on the base station, or modify the program text above to reference a
channel that is defined on the base station.
Ensure that your base station has a TaskBuilder feature license TBAS073.
Set the base station offline.
Go to the Tools > TaskBuilder page on the WebUI.
Type the program as shown above into the Program text area, and press Save.

Does the base station report it as good? If not, seeTroubleshooting on page 14.

N o o s~ DN

Set the base station online. If "Start TaskBuilder when going online" is checked, the
WebUI should show that TaskBuilder is running . If not, see Troubleshooting.

© Tait International Ltd - August 2024 11

8. Check one of the RF monitoring screens. It should show that the base station channel is
2, and that the reason is TaskBuilder.

9. Look in the TaskBuilder trace log (Monitor > TaskBuilder > Trace). You should see the
execution of the rule in the log along with a timestamp.

1.4 Monitoring TaskBuilder Execution

The TaskBuilder monitoring page on the base station Web Ul (Monitor > TaskBuilder) allows
you to verify that the TaskBuilder program is operating as expected:

« the Program states pane shows the states of your TaskBuilder program variables

 the Trace pane shows log output in real time

e you can choose what goes into the log. You can enable or disable log entries for
triggered rules and trace actions.

 the Clear button can be used to clear the on-screen messages, this will not clear the log

file

B Monitor
Alarms
Interfaces
Channel Group
Synchronization
TaskBuilder
Modules

Identity
Identity

4]

Configure

4]

Diagnose

]

Calibrate

Tools

Settings
TaskBuilder
Encryption Keys
Files

Firmware

System Status: &

TaskBuilder

TaskBuilder

Program states

Name

dig-out-1
operation
channel
number-of-faults
lockup.active

ten-second-timer

Trace

Analog conventional @ Online TaskBuilder: # Running

State
high
running
1

0

false

stopped

Triggered rules []

User trace statements

The Trace pane displays an execution history with two types of record:

1. Triggered rules, including the trigger (when : condition), and actions (then: condition).
Triggered rules are useful as a record for what your TaskBuilder program did, and to
confirm whether it is doing what you expect. The log of triggered rules can serve as a
good test record.

2. User trace statements (when executed as part of an action). User trace statements give
more targeted visibility into specific scenarios and conditions. If your program is not

© Tait International Ltd - August 2024

12

1.5

doing what you expect, you can apply trace statements as a 'trail of breadcrumbs' to
locate the point where your program operation diverged
Executing the example program above produces a log message similar to the following :

2020-11-27T03:16:56.077170 rule: when: operation.running then:
channel => 2

Trace Actions

One TaskBuilder action allows you to trace the execution of your program with a message that
you specify. The trace message is written to the output log, and can report the current values of
TaskBuilder variables.

Here is the set channel program from the example above with a trace message added:

// TaskBuilder Example 2: include a trace message
when: operation.running then:

{

channel => 2,

trace: "channel is ${channel}"

}

Running this program (with just user trace statements enabled) results in a log output similar to
the following:

2021-08-29T23:49:34.170658 channel is 2

Tips:
It can be useful to enable logging of rules when first verifying the operation of a new
TaskBuilder program. The logs will show when:

« the expected events occurred, the corresponding rules triggered

« the rule actions were taken
Once you are confident in program operation, disable the rules in the logs to keep the logs quiet
and to minimize CPU overhead.

Add trace statements to your program when:

» some aspect of your program is not doing what you expect and you want more visibility,
or

» to provide a longer term record of important events and outcomes which is less verbose
than dumping all triggered rules in the log

© Tait International Ltd - August 2024 13

1.6 Troubleshooting

If

Then

Program error

Check that the base station has the TaskBuilder license.
Check your variables are spelled correctly.
TaskBuilder keywords usually end in a colon:

Did you forget to define your variable?

No visible result

Check the base station is online
Try restarting TaskBuilder (Tools > TaskBuilder)

Check that it compiled successfully (Tools >
TaskBuilder)

Does your script need a start-up trigger
(operation.running)?

Try adding a timer and digital I/0 toggle and monitor the
output.

Base station is not doing what |
expected

Did you read the correct program file onto the base
station?

Check the log file against the rules in your program.

Base station is unresponsive

© Tait International Ltd - August 2024

Reset the base station, and take it offline on the WebUI.

Unselect 'Start TaskBuilder when going online' (Tools >
TaskBuilder). Review the trace information in Monitor >
TaskBuilder.

14

Digital Inputs and Outputs

2.1

The first exercise in this chapter toggles a digital output at one second intervals. Then we
extend the example so that the output only toggles if another input is low.

The exercises introduce the use of digital inputs and outputs, timers, user-defined variables
and given:when:then: rules.

Toggling an output gives a visual indication that your TaskBuilder program is running, and
could be a component of a high-availability (HA) set-up where one base station supervises
another. The toggling output serves as a heart-beat.

The exercises in this chapter are set up so that you can enter the programs for yourself and see
the results on the base station Web UI.

Digital I/O States

The base station has 12 digital I/O pins on the reciter DB-25 connector. (See the manuals for
pinouts).

The Digital /0 monitoring page on the base station Web Ul shows input and output states:

Interfaces
1o

Digital inputs
Number Pin Function Output level Pin voltage
1 " Digital /O 1 High High
2 12 Digital /O 2 High High
3 14 Digital I/ 3 @ Low ® Low
4 15 Digital /O 4 High High
5 16 Digital /O 5 High High
6 17 Digital I/O 6 High High
7 18 Digital I/Q 7 High High
8 19 Digital I/O 8 High High
9 20 Digital /O 9 High High
10 21 Digital I/O 10 High High
" 22 Digital /O 11 High High
12 23 Digital /O 12 High High
13 24 Digital Out 13 High

We distinguish inputs from outputs because each pin can function simultaneously as an input
and output. Each pin has an output transistor which can pull the voltage level low, and a pullup
resistor that allows the input to float high. If the base station output or an external input pulls the
pin low, then the voltage on the pin will be low (the screenshot above shows the base station
driving digital I/O 3 output low, with the input reading low as a result). No special initialization is
required to use a digital /0 as an input. The digital output initialization values are high, which
allows an external input to drive the pin into the desired logic state.

© Tait International Ltd - August 2024 15

2.2 Using a Timer to Toggle the Output

First the state transition diagram and program text, then the explanation breaks down how it
works:

timer: pulse

pulse.stopped/
pulse.start
dig-out-3.toggle

s ~ S
|' pulse.stopped '| |' pulse.running '|

// toggle digital output 3 at one second intervals
timer: pulse interval: 1 :s

when: pulse.stopped then: { pulse.start, dig-out-3.toggle }

The program defines a t imer called pul se and a single rule which, when the timer is stopped,
toggles the digital output and starts the timer.

TaskBuilder timers are standard variables that your program can create and initialize with a
timer interval. You can have intervals as integer numbers of milliseconds, seconds, minutes
and hours (denoted :ms, :s, :min, :hour respectively).

This example uses a 1 second timer. Timers have two states, stopped and running. The
initial state of a timer is stopped. Timers respond to a start event which starts the timer
running. After the timer interval, the timer generates an expired event, and becomes stopped.
The example responds to pulse. stopped which the timer generates on entering the
stopped state.

The when:then: rule has two actions, { dig-out-3.toggle, pulse.start }.To
perform multiple actions, separate them with commas and surround the actions with curly
brackets. Note that white space is not significant, so the rule could also have been written like

when: pulse.stopped then:
{

pulse.start,
dig-out-3.toggle

}

Breaking statements on multiple lines like this can be useful if you want to include a comment
with some of the actions.

dig-out-3is a TaskBuilder standard variable. As a variable it can be assigned high and low
states (become => operator), and it can respond to a toggle event.

© Tait International Ltd - August 2024 16

221 Raising Events

dig-out-3.toggleand pulse.start are both events. You raise an event in a TaskBuilder
action simply by writing the name of the event. Raising the event allows that event to trigger
other rules in your program or base station actions. We have already seen that timers respond
toastart eventby going to their running state. Digital outputs respond to a toggle event
by changing the output state from high to low or vice-versa.

TaskBuilder offers only two types of action. The become => operator changes the state of a
TaskBuilder variable. Raising an event can trigger other rules in your TaskBuilder program, or
cause a pre-defined action in a standard variable (as is the case in this example).

222 Summary

What we learned in this exercise:

« digital I/Os are bidirectional - TaskBuilder can drive outputs and respond to inputs

e programs create instances of timer standard variables. Timers have intervals in the
range of milliseconds to hours.

e the then: clause ofawhen:then: rule can have a list of actions. The actions are
separated by commas, and the list of actions is surrounded by curly brackets { }.

e you can freely use white-space in formatting TaskBuilder programs

2.3 Toggle an Output Only When Digital Input 4 is Low

What if a digital output should only toggle when digital input 4 is low? This exercise introduces:

« stateful behaviors

« digital output 13 is an output-only pin, with current sinking capabilities suitable for driving
arelay

Digital output 13 is an output-only pin. TaskBuilder programs can change and
respond to dig-out-13, but cannot reference the corresponding dig-in-13

The state transition diagram below shows what we want:

| pulse-control

dig-in-4.high il dig-in-4.low

no-toggle toggling

- pulse timer.start
~ 7 - dig-out-13.toggle

pulse timer expire

© Tait International Ltd - August 2024 17

The program logic has two states. When digital input 4 is high, the no-toggle state does nothing
interesting. When digital input 4 is low, a toggling state uses a timer to toggle digital output
thirteen.

The equivalent TaskBuilder program matches the diagram:

// Toggle digital output 13 at one second intervals

// but only when digital input 4 is low

timer: pulse interval: 1 :s

// pulse control defines whether to toggle the output pin.
active: pulse-control has-states: { no-toggle, toggling }
when: dig-in-4.high then: pulse-control => no-toggle

when: dig-in-4.low then: pulse-control => toggling

// toggling
when: pulse-control.toggling then: { pulse.start, dig-out-13.toggle }

given: pulse-control.toggling

when: pulse.expire then: pulse-control => toggling

The free use of white-space visually aligns the different parts of each rule and quickly pick out
what is relevant when reading the program.

Breaking the program down:
// pulse control defines whether to toggle the output pin.

active: pulse-control has-states: { no-toggle, toggling }

This line creates an active variable called pulse-control which can have two states: no-
toggle and toggling. Making the states explicit lets us divide the problem in two parts:

1. Whatis the logic for deciding the state of pulse-control, and

2. What are the behaviors wanted for each distinct state.

The rules for defining which state is active are straight-forward to express:
when: dig-in-4.high then: pulse-control => no-toggle
when: dig-in-4.low then: pulse-control => toggling

pulse-control becomesno-toggle or toggling whenachangeindig-in-4 is
detected.

The no-toggle state has no interesting behaviors, so it has no rules.

The toggling state should start the timer and toggle the digital output, as in the previous
example:

when: pulse-control.toggling then: { pulse.start, dig-out-13.toggle }

© Tait International Ltd - August 2024 18

2.31

© Tait International Ltd - August 2024

Lastly, we need a rule for the expiry of the pulse timer. We already have a rule for pulse-
control.toggling to performthose actions - so all that is necessary is to re-initialize
pulse-control:

given: pulse-control.toggling when: pulse.expire then: pulse-control
=> toggling

This TaskBuilder statement adds a given: condition tothe when:then: rule. Theruleis
only triggered if pulse-control isinthe toggling state (because we only want to toggle
the output in that state).

Because the pulse-control.toggling state already has a definition for the actions to
perform on entering that state:

when: pulse-control.toggling then: { pulse.start, dig-out-13.toggle }

it is sufficient to simply re-enter the state when the timer expires (pulse-control =>
toggling above).

Active States and the given:when: then Rule

The given: clause ofagiven:when:then: rule mustalways be the fully qualified name of
a state. A fully qualified state name is written in the form variable-name. state-name (such
aspulse-control.toggling).

State names can be user defined active variables (as in this example), standard variable states
(such as dig-in-4.1ow) or composite variable states (which are introduced in later
examples).

The given:when:then: rule performs the specified actions when : the specified event
occurs but only if the given: nominated state is active.

19

3 Set Channel on Start-Up

This chapter revisits the set channel examples and goes a bit more deeply into how to read it
and recognize the different elements.

3.1 Example

Here it is again:
// TaskBuilder Example 1

when: operation.running then: channel => 2
The diagram provides a visualization of what happens:

"
™

Y operation

. s .
online | running

:. ™,
™
v ? - - channel

operation.running

The one-line TaskBuilder program relies on two variables:

e operation is astandard TaskBuilder variable. It has a single state called running,
which becomes active at the time when TaskBuilder starts - when the base station is
taken online via the base station WebUI.

» the other TaskBuilder variable is called channel which is described below

The text'when: operation.running then: channel => 2'iscalledawhen:then:
rule. when: then: rules have the form:
when: event then: do action(s)

In this rule, the triggering event is operation. running which as described above, occurs

when the base station goes online and TaskBuilder starts running. That is the primary purpose

ofthe operation. running variable is to provide an initialization event when TaskBuilder
starts.

© Tait International Ltd - August 2024

20

3.11

3.1.2

When arule is triggered by an event, TaskBuilder carries out the action(s) in the then: clause.
The rule in this example has one action: channel => 2. This action requests the base
station to change channel:

e channel is a standard variable which represents the base station channel. TaskBuilder
rules can react to the base station channel, and can change the base station channel.
e =>isthe 'become’ operator. The become operator changes the state of a TaskBuilder
variable.
This TaskBuilder program also includes a comment. Comments are good places to remind the
reader what the program is for and provide contextual information.
// This is a comment
Double forward slashes can follow TaskBuilder statements on the same line:

when: operation.running then: channel => 2 // base station goes
// online.

State Entry Events

The example uses two standard TaskBuilder variables: operation and channel. It relies on
some specific properties that all variables share:

1. Inthe example, the rule is triggered by the 'when: operation.running' part. oper-
ation.running is an eventcorresponding to operation becoming running. Thisis
a property of all TaskBuilder variables: When a variable enters a state, TaskBuilder gen-
erates an event with the name of that state.

2. There are three actions that can cause a variable to enter a state:
e base station operation - we saw that 2is one possible channel. Whenever

the base station changes channel the channel standard variable changes
as well (and generates a state entry event).

 start up - all TaskBuilder variables have an initial state when TaskBuilder
begins running. The initial state of TaskBuilder output variables, those
writable by TaskBuilder (see TaskBuilder Inputs and Actions) is the first
listed state in that document.

e abecome action (eg: channel => 2)-even if the target state is active
already, the become operator causes that variable to (re) enter that state.

Revert Channel on Exit

TaskBuilder can respond to exit events as well as start up events. Suppose you want the base
station to be on channel 2 when TaskBuilder is running, but should be on channel 3 otherwise.
You can do this using the operation.stopping event:

// Base station is on channel 2 when TaskBuilder is running and on
// channel 3 otherwise

when: operation.running then: channel => 2

when: operation.stopping then: channel => 3

© Tait International Ltd - August 2024 21

On TaskBuilder exit (base station goes offline or user stops TaskBuilder from the Web Ul),
TaskBuilder will execute the actions for rules that include a when: operation.stopping
clause. Those actions are the last to execute. So in the example above, the base station will be
on channel 3 after the base station stops. If the actions for that rule trigger further rules (such as
when: channel. 3), those further rules are not triggered.

313 Summary

What we learned

e TaskBuilder variables have well defined states

» TaskBuilder generates state entry events when variables (re)enter a state. The name of
the event is the name of the state (e.g. operation.running).

e operation.running is a start up event, which occurs when the variable cperation
enters its initial running state. Itis a useful trigger for initialization actions.

« the when:then: rule specifies actions which should occur when triggered by the event
specified in the when : condition

e channel is a standard variable which can be changed using the become => operator.
The base station changes its channel in response to a channel =>become action.

» TaskBuilder recognizes everything following a double slash (// This is a
comment) as commentary, and not part of the TaskBuilder program

e operation.stoppingisthe last eventto be processed when TaskBuilder stops. You
can use it to set the base station to a well defined operating state.

© Tait International Ltd - August 2024 22

Select a Channel Using Digital Inputs

4.1

The exercises in this chapter show two approaches for selecting a channel based upon states
of the base station digital inputs. It also introduces composite states which allow you to express
combinations of states.

Using Two Inputs to Select Two Channels

Exercise: Write a program to select channel 20 on digital input 3 low and channel 21 on digital
input 4 low.

The program is quite simple using what we have already learned:

// Select channel 20 on dig-input 3 low, and channel 21 on dig-input
// 4 low

when: dig-in-3.low then: channel => 20
when: dig-in-4.low then: channel => 21

You can generalize this simple example to more channels by adding more inputs and more
rules.

Some questions to think about are:

« what channel will the base station be on if both inputs are low?
 is it possible for digital inputs 3 and 4 to be high and low respectively, yet the base station
is on channel 207

If you are using a rotary switch to select the base station channel, this approach is probably
fine. Rotary switches typically have a 'break before make' characteristic, so should not suffer
from multiple inputs being low at the same time.

If you are using a switch or switches that could create intermediate states, you probably want to
use logic such as the following:

 select channel 20 when digital input 4 is high AND digital input 3 is low
« select channel 21 when digital input 4 is low AND digital input 3 is high

How to create combinations of states? You could create a state variable and cover all of the
possible states and transitions of digital inputs 3 & 4:

© Tait International Ltd - August 2024 23

4.2

4.3

‘e Y I/’ "\,I

|' select.1 \ dig-in-4.high select.2
channel == 20
\ . dig-in-4.low \
I I
dig-in-3.high dig-in-3.high
‘ dig-in-3.low dig-in-3.low
|'f select.3 R dig-in-4.high . select.4 -'\"l

channel == 21

dig-in-4.low

This is complex, easy to get wrong, and does not scale.

Composite States

Composite states allow you to define states as combinations of other states. Here is a program
that selects channel 20 or 21 depending which of digital inputs 3 and 4 are low:

// Select channel 20 on digital input 3 low, and 21 on digital input
// 4 low.

composite-state: select.0 = dig-in-4.high AND dig-in-3.low

composite-state: select.l = dig-in-4.low AND dig-in-3.high

when: select.0 then: channel => 20
when: select.l then: channel => 21

With this program it is still possible for the base station to be on either channel 20 or 21 when
both inputs are high or low (as in the previous example), but unlike the last example, if digital
inputs 3 & 4 are high and low respectively, the base station will always go to channel 21.

Using Two Inputs to Select Four Channels

Composite states make it easy to use combinations of input conditions to select channels. With
two inputs it is possible to select between four channels:

// Select channels 20 to 23 based on combinations of digital inputs 3

// & 4.

composite-state: select.

dig-in-4.low AND dig-in-3.low

composite-state: select. dig-in-4.low AND dig-in-3.high

composite-state: select. dig-in-4.high AND dig-in-3.low

w N = O
Il

composite-state: select. dig-in-4.high AND dig-in-3.high

© Tait International Ltd - August 2024 24

when:
when:
when:

when:

select.0 then:

select.l then:

select.2 then:

select.3 then:

channel =>
channel =>
channel =>

channel =>

20
21
22
23

4.4 Debouncing the Switch Input

The final example uses a timer to add debounce to the inputs. Switch contacts can bounce,
creating intermediate transient states which TaskBuilder can react to, resulting in multiple
channel change requests in a short time. The base station internals are robust, but it is good
practice to select a channel only when the switch contacts have settled. The program starts a
debounce timer when any input changes, and only selects the target channel once the timer

expires.

// Select channels 20 to 23 based on combinations of digital inputs 3

// & 4.

// Change channel only when the debounce timer expires.

timer:
when:

when:

composite-state:
composite-state:
composite-state:

composite-state:

given:
given:
given:

given:

debounce interval: 50 :ms

dig-in-3.change then: deb

dig-in-4.change then: deb

select.O
select.1
select.?2

select.3

select.
select.
select.

select.

when:
when:
when:

when:

= dig
= dig
dig

w N = O
Il

= dig

debounce.
debounce.
debounce.

debounce.

ounce.

ounce.

-in-4
-in-4
-in-4

-in-4

expire
expire
expire

expire

start

start

then:
then:
then:

then:

.high AND dig-in-3.
.high AND dig-in-3.

channel =>
channel =>
channel =>

channel =>

.low AND dig-in-3.low

.low AND dig-in-3.high

low

high

20
21
22
23

change is an event generated by digital inputs when the input state changes. If the inputs have
contact bounce, the debounce timer may be (re)started multiple times, but it will only expire 50

ms after the last restart of the timer. The program uses given:when: then: rules to select the
correct channel when the debounce timer expires.

© Tait International Ltd - August 2024

25

4.5

4.5.1

4.6

More on Composite States

Composite states can be defined in terms of any other states, including the states of standard
variables, active variables or other composite states.

Composite state definitions can use boolean operators OR, AND, NOT and parentheses ().
You can freely mix them in an expression as you would for an arithmetic expression. Like
arithmetic expressions, the boolean operators have a precedence order: () > NOT > AND >
OR.

So, forexample if var-1. true is a state that is currently active and var-2 . falseis not
currently active, then NOT (var-1.true OR var-2.false) gives a different result to
(NOT var-1l.true OR var-2.false)

Comparisons Between Active Variables and Composite States

Both active variables and composite states give you a way to define the conditions for
responding to an event (when used in a given: clause) and as a trigger (the when: clause).
There are some differences as well:

 active variables define a set of states, of which exactly one is true at any time

» composite states do not have any specific relationship to each other. Given a set of
composite states with the same variable name (eg select in the example above), none
may be active at any given time, or multiple may be active. (For example, write down a
truth table to convince yourselfthat var.a OR var.b is active whenever NOT (NOT
var.a AND NOT var.b) is.

e variable names: although composite states can share a variable name, it is for notational
convenience only. Although the select states in the example have an obvious real-
world relationship, TaskBuilder treats them as independently defined states.

» the become => operator applies to active variables but not composite states. The value
of a composite state depends only on the states from which it is derived. Applying the
become operator to a composite state is a program error.

e composite states are good for capturing combinations of input conditions. Active variable
states are useful to represent distinct sets of behaviors.

State Diagrams

The examples in this chapter mostly do not have state diagrams. Given that TaskBuilder treats
composite states independently, while it is possible to draw state diagrams including composite
states (see the example above), there is not the same direct relationship between diagram
elements and program elements as there is with state diagrams based on active variables.
Again, this goes to the different uses for active variables versus composite states: If the
problem domain and solution are naturally expressed using a state transition diagram, then
there is likely a straightforward solution using active variables. If the problem space suffers from
a potential explosion of states, then composite states may reduce that problem space
complexity.

© Tait International Ltd - August 2024 26

Drive a Digital Output Given an Alarm
Condition

5.1

A common requirement is to drive a contact closure if an alarm is present. The contact could be
connected to a warning light at a local or remote location.

The examples in this chapter include:

« light a lamp when the base station front panel is absent
 indicate a major alarm
The base station has many alarms, all of which can be used as TaskBuilder inputs. Alarms are

listed in TaskBuilder Alarm Names. TaskBuilder treats alarms as individual state variables,
each of which can have the values of active, inactive ordisabled.

Light a Lamp When the Base Station Front Panel is
Absent

The front panel includes the fans that cool the base station and allow it to operate under the
widest range of temperatures. The front panel may be removed to replace modules, but
forgetting to replace the front panel could require a costly return to site. This example uses
TaskBuilder to drive digital output 10 low, to close a contact and light a lamp when a base
station has the front panel removed.

The specifications manuals listed in Associated Documentation on page 7 define the
operating current and voltage conditions for the digital inputs and outputs. Using a
digital output to drive a relay may require an electrical interface circuit.

// Drive digital output 10 low when the front panel alarm is active

when: alarm-front-panel-not-detected.active then: dig-out-10 => low

This is not quite the end of the story, because you probably also want the light to turn off when
the alarm is no longer active. You can do that in different ways - use multiple rules:

// Drive digital output 10 low when the front panel alarm is active -
// variation 1

when: alarm-front-panel-not-detected.active then: dig-out-10 => low

when: alarm-front-panel-not-detected.disabled then: dig-out-10 =>
high

when: alarm-front-panel-not-detected.inactive then: dig-out-10 =>
high

© Tait International Ltd - August 2024 27

5.2

Or, you could use a composite state:

// Drive digital output 10 low when the front panel alarm is active -
// variation 2

composite-state: fp-alarm.not-active = NOT alarm-front-panel-not-
detected.active

when: alarm-front-panel-not-detected.active then: dig-out-10 => low
when: fp-alarm.not-active then: dig-out-10 => high

The first variation is simpler, and more flexible, but you may forget to account for the disabled
state; using composite states is also the natural way to combine alarm inputs. See the next
example.

P25 Major Alarm

DMR base station firmware assigns to alarms a status: Under a major alarm condition the
channel is unusable. With a minor alarm the channel may be degraded but still provide service.
The result of the major alarm could be a remote status indication, or take the channel out of
service, or even switch another channel into service as a replacement.

This example provides the equivalent of the DMR major alarm with P25 firmware on a TB7300.
The specific conditions that contribute to a major alarm are of course system specific. For
simplicity, this example uses the same values as the DMR fixed and default configurable
values.

The DMR maijor alarms (using default values where configurable) on TB7300 are:

PA calibration invalid, PA shutdown, 1PPS pulse absent, Channel invalid, Simulcast
unsynchronized, Receiver calibration invalid, Hardware configuration invalid, 25 MHz
synthesizer out of lock, 61.44 MHz synthesizer out of lock, TxF synthesizer out of lock, Rx
synthesizer out of lock

The standard TaskBuilder alarms are listed in TaskBuilder Alarm Names

It is straightforward to define a major alarm as a TaskBuilder composite state:

// Major alarms result in the base station being out of service
composite-state: major-alarm.active =
alarm-pa-calibration-invalid.active OR

alarm-pa-shutdown.active OR

alarm-lpps-pulse-absent.active OR
alarm-simulcast-unsynchronized.active OR
alarm-receiver-calibration-invalid.active OR
alarm-hardware-configuration-invalid.active OR
alarm-25-mhz-synthesizer-out-of-lock.active OR

alarm-61-44-mhz-synthesizer-out-of-lock.active OR

© Tait International Ltd - August 2024 28

5.3

5.4

alarm-txf-synthesizer-out-of-lock.active OR

alarm-rx-synthesizer-out-of-lock.active

To drive a pin, we want the inactive alarm state as well:
composite-state: major-alarm.inactive = NOT major-alarm.active
when: major-alarm.active then: dig-out-10 => low

when: major-alarm.inactive then: dig-out-10 => high

Raising a Custom Alarm

Extending the example above, it is possible to assert a custom alarm for a given TaskBuilder
condition (see TaskBuilder Inputs and Actions). To associate Custom alarm 1 with the major
alarm from the example above , we would add rules such as:

when: major-alarm.active then:
{ dig-out-10 => low, alarm-custom-alarm-l.raise }
when: major-alarm.inactive then:

{ dig-out-10 => high, alarm-custom-alarm-1l.clear }

Summary

What we learned:

« when writing rules that react to the presence of an alarm (such as driving a contact

output), ensure that you capture the conditions both for asserting the pin output and de-
asserting. You can either provide rules for all the alarm states (including disabled) or use

a composite state.
» composite states are a good way to represent combinations of alarms

e TaskBuilder can raise and clear custom alarms

© Tait International Ltd - August 2024

29

Select Squelch Mode Using Digital Inputs

6.1

6.2

rx-squelch-mode

Represents the current level of squelch applied to the receiver.

Three states: normal, subaudible-bypass, carrier-bypass

+ default state is normal

State Decode subaudible config | Gating control config
normal As configured As configured
subaudible-bypass Ignored As configured

carrier bypass Ignored Ignored

Points to note

e rx-squelch-mode is not affected by the channel group control Monitor Squelch

e the state carrier-bypass is unsupported in P25 conventional and trunking and DMR
conventional and trunking. Any rule which will set rx-squelch-mode to carrier-
bypass will instead set it to normal

« the state subaudible-bypass also bypasses NAC in P25 and color code in DMR

The following are valid TaskBuilder statements:
when: dig-in-1.low then: rx-squelch-mode => normal
when: dig-in-2.low then: rx-squelch-mode => subaudible-bypass

when: dig-in-3.low then: rx-squelch-mode => carrier-bypass given: rx-
squelch-mode.subaudible-bypass when: dig-in-4.low then: rx-squelch-
mode => normal

rx-gate-state

Reports the receiver state in the context of TaskBuilder squelch control.

Four states: closed, open, subaudible-bypassed, carrier-bypassed
 default state: closed

rx—-gate-state is tightly coupled with the receiver gate and another TaskBuilder variable; the
rx-squelch-mode. rx—gate-state is derived based on the following logic:

© Tait International Ltd - August 2024 30

Rx gate | rx-squelch-mode | rx-gate-state
closed can be any state closed

open normal open

open subaudible-bypass | subaudible-bypass
open carrier-bypass carrier-bypass

Points to note

e rx-gate-state is not directly affected by the following user configuration

« Configure > RF Interfaces > Channel profile > Analog > Gating condition

« Configure > RF Interfaces > Signalling profile > Analog > Subaudible squelch decode
* rx-gate-state is not affected by the monitor mode requested by a console

* rx-gate-state does not have carrier-bypass state in P25 or DMR system types

The following are valid TaskBuilder statements:

when: rx-gate-state.open then: dig-out-10 => low

when: rx-gate-state.closed then: dig-out-9 => low

when: rx-gate-state.carrier-bypassed then: dig-out-8 => low
when: rx-gate-state.subaudible-bypassed then: dig-out-7 => low

given: rx-gate-state.subaudible-bypassed when: dig-in-4.low then:
channel.up

© Tait International Ltd - August 2024

Select Tx Key Using Digital Inputs

71

7.2

tx-key-operation

Controls whether the E&M is disabled or works normally (according to the configuration)

Two states: normal, disabled

+ default state is normal

State E&M configuration
normal As configured
disabled Disabled

Points to note

e tx-key-operation is notsupported in DMR

* tx-key-operation stays disabled in the system type (P25 trunking) where analog
lines are not used

The following are valid TaskBuilder statements:
when: dig-in-1.low then: tx-key-operation => normal
when: dig-in-2.low then: tx-key-operation => disabled

given: tx-key-operation.disabled when: dig-in-4.low then: rx-squelch-
mode => normal

tx-key-state

Reflects the state of Tx-Key.

Two states: inactive, active:

 inactive: E&M is either disabled or not active (stream is not accepted from the audio line)

» active : E&M is not disabled and is active (stream can be accepted from the audio line)

The following are valid TaskBuilder statements:
when: tx-key-state.inactive then: rx-squelch-mode => normal
when: tx-key-state.active then: dig-out-4 => low

given: tx-key-state.active when: dig-in-4.low then: rx-squelch-mode
=> normal

© Tait International Ltd - August 2024 32

8 Transmit Lockout

This chapter shows a transmit lockout use case with graphical and TaskBuilder solutions and
offers some advice for good program style.

Problem

Solar and battery powered sites may provide a transmit lockout function to preserve battery
storage. After transmitting for a maximum time, stop transmitting and wait until the transmitter is
no longer keyed before resetting the lockout condition. Re-enable the transmitter once it is no
longer keyed.

Here is a state transition diagram illustrating a tx-control function implementing lockout.
Channel 1 is able to transmit. Channel 2 has transmit disabled.

. Tx lockout: tx-control states
|
N rﬁ enabled ™ Ex-input.keyed . transmitting xﬁ
start-up
. channel == 1 - start transmit timer
_ Y, tx-input.de-keyed § Y,
transmit timer expire
lockout]
channel == 2

)) start lockout timer
lockout timer expire

In the enabled state the repeater will transmit if keyed.

In the transmitting state, the base station is keyed, and the transmit timer will end the
transmission if it expires.

In the lockout state, the transmitter is disabled and a lockout timer is running.

Lockout ends only when both the lockout timer has stopped (expired) and the transmit input has
finished.

Here is a TaskBuilder program that does the same thing. It is the same design, i.e. the
TaskBuilder elements correspond to the diagram.

// Transmit lockout.

// After 30 seconds of transmission, lock out the transmitter:

// Useful for solar or battery operation.
// To re-enable the transmitter, the lockout timer must complete, and the

// transmit source must be removed.

// 2020-12-11 Tait Communications, Iain McInnes

© Tait International Ltd - August 2024 33

// Tx control enables or disables transmission based on a timeout.

active: tx-control has-states:

{

enabled, // would transmit if keyed.

transmitting, // is transmitting - waiting for lockout.

lockout, // transmission was too long - wait for timer and end of
// transmission request

}

timer: tx-timer interval: 30 :s
timer: lockout-timer interval: 10 :s

// Condition for ending lockout

composite-state: lockout.end = lockout-timer.stopped AND tx-input.de-keyed

// enabled state
when: tx-control.enabled then: channel => 1 // channel 1 allows tx

given: tx-control.enabled

when: tx-input.keyed then: tx-control => transmitting

// transmitting state
when: tx-control.transmitting then: tx-timer.start

given: tx-control.transmitting

when: tx-input.de-keyed then: tx-control => enabled

given: tx-control.transmitting

when: tx-timer.expire then: tx-control => lockout

// lockout state

// channel 2 has tx disabled

when: tx-control.lockout then: { channel => 2, lockout-timer.start }
given: tx-control.lockout

when: lockout.end then: tx-control => enabled

Implementation notes

tx-input is a standard variable that reports whether the base station would be transmitting if
it was able (transmit signal is present). The most likely reason not to be able to transmit is the
channel configuration has transmit operation disabled (Configure > RF Interfaces > Channel
profiles > Transmitter enabled).

The composite state 1ockout .end is a good example of simplifying the solution when it
depends on multiple inputs:

composite-state: lockout.end = lockout-timer.stopped AND tx-input.de-keyed

© Tait International Ltd - August 2024 34

The rule uses the timer st opped state rather than the expi re event because composite
states are derived from states, not events.

You could achieve the same thing with two extra tx-control states (perhaps labeled
lockout-timeout and tx-dekeyed) and a few additional rules. The composite state
expresses the solution intention better.

© Tait International Ltd - August 2024

35

Call Profiles and Tone Remote

9.1

9.2

Tone Remote Input

Base station P25/AS-IP firmware release 3.55 (December 2023) includes TaskBuilder support
for call profiles and tone remote operation.

Tone remote is an analog single-tone signaling method used by analog consoles. There are 16
distinct tone signaling frequencies at 100 Hz intervals between 550 Hz and 2050 Hz.
Combining two successive tones provides 256 distinct combinations. Tone remote signaling is
commonly used for:

« selecting a channel
e unmuting the receiver
e enabling / disabling RF repeat

¢ keying the transmitter

The signal for keying the transmitter is different from function tones: A low level guard tone is
superimposed on the console audio, and the transmitter is keyed while the tone is present.
Transmitter keying is a function of the base station without requiring TaskBuilder programming.

TaskBuilder can change channel, and enable or disable RF repeat via a channel change.
Unmuting the receiver (also known as monitor squelch) is also supported. Keying the
transmitter does not require TaskBuilder support.

Call Profiles

Call profiles provide P25 call signaling information for downlink transmissions from an analog
line connected console to radio subscriber units. In release 3.55, TaskBuilder can change and
respond to changes in call profiles.

Example: using tone remote to change channel
// Tone remote 1150 Hz selects channel 1
// Tone remote 1250 Hz selects channel 2

// Tone remote 1350 Hz selects channel 3

when: tone-remote.single-1150 then: channel => 1
when: tone-remote.single-1250 then: channel => 2

when: tone-remote.single-1350 then: channel => 3

Tone remote configuration on the base station WebUI (Configure > Analog line > Tone remote)
has a selection for recognizing single or dual function tones. TaskBuilder follows that selection:

© Tait International Ltd - August 2024 36

« with single function tone configuration, TaskBuilder recognizes all of the tones tone-
remote.single-550 through tone-remote.single-2050

 with dual function tone configuration, TaskBuilder recognizes all of the tones tone-
remote.dual-550-550 through tone-remote.dual-2050-2050

« with dual tone configuration, the above example could look like:

// Tone remote dual tone 550 / 1150 Hz selects channel 1
// Tone remote dual tone 550 / 1250 Hz selects channel 2

// Tone remote dual tone 550 / 1350 Hz selects channel 3

when: tone-remote.dual-550-1150 then: channel => 1
when: tone-remote.dual-550-1250 then: channel => 2

when: tone-remote.dual-550-1350 then: channel => 3

Example: using tone remote to unmute the receiver

// Temporarily enable monitor squelch upon receiving a function tone
timer: squelch-timeout interval:5:s

when: tone-remote.single-1150 then:

{

squelch-timeout.start,

rx-squelch-mode => subaudible-bypass

}

when: squelch-timeout.expire then: rx-squelch-mode => normal

Example: using digital inputs to select call profile

A P25 channel has an analog console which provides signaling via wired digital outputs. The
channel has two P25 talkgroups, and TaskBuilder selects a talkgroup based on the state of a
digital input.

// dig-in-1 low selects call profile 1
// dig-in-1 high selects call profile 2
when: dig-in-1.low then: call-profile => 1

when: dig-in-1.high then: call-profile => 2

Usage notes

Call profiles apply to analog and P25 conventional operation when used with the analog line. As
of version 3.55, DMR/MPT firmware does not support call profiles, tone remote operation or
integration of those functions into TaskBuilder.

© Tait International Ltd - August 2024 37

9.3

9.4

tone-remote-key-operation

Controls whether the tone-remote-key is disabled or works normally (according to the
configuration)

Two states: normal, disabled.

+ default state is normal

State Tone remote configuration

normal As configured

disabled Disabled

Points to note

e tone-remote-key-operation is not supported in DMR

* tone-remote-key-operation stays disabled inthe system type (P25 trunking)
where analog lines are not used

The following are valid TaskBuilder statements:

when: dig-in-1.low then: tone-remote-key-operation => normal
when: dig-in-2.low then: tone-remote-key-operation => disabled
when: dig-in-3.low then: rx-squelch-mode => carrier-bypass

given: tone-remote-key-operation.disabled when: dig-in-4.low then:
channel => 7

tone-remote-key-state

Reflects the state of tone remote.

Two states: inactive, active

« inactive: tone remote is either disabled or not detected (stream is not accepted from the

audio line)

 active : tone remote is not disabled and is active (stream can be accepted from the audio

line)

The following are valid TaskBuilder statements:

when: tone-remote-key-state.inactive then: rx-squelch-mode => normal

when: tone-remote-key-state.active then: dig-out-4 => low

given: tone-remote-key-state.active when: dig-in-4.low then: rx-
squelch-mode => normal

© Tait International Ltd - August 2024

38

10 Signal Path States

10.1 tx-operation

The tx-operation variable allows a TaskBuilder program to disable the transmitter.

Two states: normal, disabled

¢ normal: normal transmitter operation

« disabled: TaskBuilder has disabled the transmit signal path

At TaskBuilder start-up the initial state is normal.\

The following are valid TaskBuilder statements:

when: operation.running then: tx-operation => disabled
when: tx-operation.normal then: dig-out-10 => low
when: tx-operation.disabled then: dig-out-9 => low

given: tx-operation.disabled when: dig-in-10.low then: channel.up

10.2 rx-operation

The rx-operation variable allows a TaskBuilder program to disable the receiver.

Two states: normal, disabled

e normal: normal receiver operation

 disabled: TaskBuilder has disabled the receive signal path.

At TaskBuilder start-up the initial state is normal

rx-operation.disabled is not supported in DMR conventional, DMR trunking &
P25 trunking.

The following are valid TaskBuilder statements:

when: operation.running then: rx-operation => disabled
when: rx-operation.normal then: dig-out-10 => low
when: rx-operation.disabled then: dig-out-9 => low

given: rx-operation.disabled when: dig-in-10.low then: channel.up

© Tait International Ltd - August 2024 39

11

High Availability Repeater

11.1

11.2

Requirements

If a channel has stringent down time requirements, the channel can be made resilient to the
failure of a repeater by deploying primary and backup repeaters:
« if the primary repeater is not able to provide service, the backup repeater takes over

e amajor alarm or power fail results in a 'no service' condition. The repeater can not
provide service.

 the solution uses a change-over relay to switch the transmit antenna to the primary or
secondary repeater. The solution needs to produce a signal that drives the relay, and
must avoid operating the relay when either base station is transmitting.

Problem Logic

The diagram shows a possible solution:

Tx
Primary
S >
i .
change-oyer relay ! — .
- | | primary signal
- - | |
MNo i
: | |
| | |
| |
! I
l | TX
i l Backup
R S
tx-control

The backup supervises the primary by means of a digital signal from the primary, which
indicates whether the primary is up (nominal) or down (failed).

The backup has the decision logic for which repeater is in service. It outputs a tx-control signal

which drives a change-over relay and informs the primary which repeater is in service.

© Tait International Ltd - August 2024

40

Primary operation has the following states:

State

Composite inputs

Outputs

Commentary

nominal

NOT maijor alarm
AND

tx-control is primary

primary signal => up.

transmit => enabled.

Normal operating
condition. Primary does
not have a major alarm,
primary is reporting an 'up'
signal to backup, and
backup has responded by
switching the change-over
relay to the primary.

down

major alarm

primary signal =>
down.

transmit => disabled

Primary has a fault taking it
out of service. It sets the
primary output signal to
'down’, and disables its
transmitter. Backup is
expected to operate the
change-over relay.

recovering

NOT major alarm
AND

tx-control is backup

primary signal => up.

transmit => disable

Primary has recovered
from a fault. Primary is up,
but primary can detect that
the backup repeater still
has the change-over relay
in the backup position.
Backup is expected to
recognize that the primary
is up and operate the
change-over relay.
Primary transmit is
disabled.

offline

Caused by fault or
user action

primary signal =>
down

Faults which cause the
channel to be invalid also
result in the base station
being offline. TaskBuilder
programs can respond to
the operation.stopping
event.

The primary states are composite (a combination of alarm status and tx-control input).

The primary should output a 'down’ signal when it has a major alarm or when it goes offline.

When the primary is outputting a down signal it must not transmit.

When the major alarm clears, it must output an 'up' signal, and wait until it sees that it has
control (from the backup) before enabling transmit.

© Tait International Ltd - August 2024

41

Backup operation has the following states:

|'/ backup-enabled primary up : disabling . backup-disabled -\"l

channel => tx enabled channel => tx disabled | disabling.expire |channel => tx disabled

tx-control == backup . disabling.start tx-control == primary
major alarm

primary down AND NOT major alarm

State Composite inputs Outputs Commentary
primary-signal.down tx enabled The backup swﬂchgs the
backup- AND NOT (backup)] change-over relay if the
enabled major alarm P tx-control switched to | primary is down and the
backup backup is up.
. o disable transmit Allow for channel
disabling pmr;qlarrzligqnal.up OR _ _ change time before
J start disable timer switching the relay.
. . Otherwise the backup
primary- . . . tx-control switched to .
enabled disable timer expired fimar switches the change-
P y over relay to the primary.
Faults which cause the
channel to be invalid
. Caused by fault or tx-control switched to alsq resuIF n thelbase
offline user action fimar station being offline.
P y TaskBuilder programs
can respond to the oper-
ation.stopping event

Signal polarities

Itis possible to choose signal polarities so as to make the system as robust as possible. If either
the primary or backup is powered down or disconnected, the other should still operate.

« the primary signal indicates whether the primary is up or down. If it is unconnected or the
primary is powered down, the input to the backup will float high. The backup should treat
primary status as down when the signal input is high.

« the tx-control signal output from the backup drives the change-over relay and informs the
primary. If the backup is disconnected or powered down, the input will float high at the
primary. The primary should treat tx-control as primary when the input is high, and the

relay should be in the primary position when it is de-energised.

Manual override

With the signal polarities as above, manually taking the primary or backup offline will result in
the other one remaining in control.

© Tait International Ltd - August 2024

42

11.3

Relay must not operate when either repeater is transmitting
The design assures this by means of the hardware handshake signals:

In the presence of a primary fault:

¢ the primary asserts the primary signal down and does not transmit

» the backup recognizes the primary is down, switches the change over relay to the
secondary and can transmit.

When the primary fault clears:
 the primary asserts the primary signal up, but does not immediately transmit (recovering
state)

« the backup recognizes the primary is up, stops any transmission itself, and switches tx-
control to the primary

« the primary recognizes that it has tx-control, and enables transmit once again

Primary Repeater Definitions, States and Logic

For the primary repeater, all states are logical combinations of primary and backup operational
status. The primary rules in the TaskBuilder solution just depend on the input conditions and
their combinations.

operation.stopping
The program responds to alarms and base station offline in different ways:
when: primary-operation.down then: { signal => down, channel => 2 }

when: operation.stopping then: { dig-out-2 => high, channel => 2 }

Why isn't operation. stopping justa condition that contributes to primary-
operation.down ?

operation.stopping is the last event to trigger any rule

A rule such as:

when: operation.stopping then: { signal => down, channel => 2 }
will not work as expected. It would depend upon the additional rule

when: signal.down then: dig-out-2 => high

before the output signal is actually asserted. But as discussed, since operation.stopping
is the last event, signal.down is not able to trigger the rule that drives the output high.

The solution is to just drive the output high directly with the operation. stopping event.

© Tait International Ltd - August 2024 43

© Tait International Ltd - August 2024

Program text

// Simple high-availability solution utilizes two repeaters (primary
// and backup)

// The backup supervises the primary via a primary signal connection
// indicating the health of the primary (up or down)

// The backup operates a change-over relay (tx-control output)

// Primary or backup repeaters are down if they have a major alarm
// (see text below for definition of major alarm)

// Secondary must not operate relay while either repeater is
// transmitting.

// 2020-12-16 Tait Communications Iain McInnes

e

//
// Primary repeater definitions, states and logic.

//

// Major alarms result in the base station being out of service

// Can customize for individual deployments.

composite-state: major-alarm.active =
alarm-pa-calibration-invalid.active OR
alarm-pa-shutdown.active OR
alarm-pa-forward-power-low.active OR
alarm-lpps-pulse-absent.active OR
alarm-channel-invalid.active OR
alarm-simulcast-unsynchronized.active OR
alarm-receiver-calibration-invalid.active OR
alarm-hardware-configuration-invalid.active OR
alarm-25-mhz-synthesizer-out-of-lock.active OR
alarm-61-44-mhz-synthesizer-out-of-lock.active OR
alarm-txf-synthesizer-out-of-lock.active OR

alarm-rx-synthesizer-out-of-lock.active

composite-state: major-alarm.inactive = NOT major-alarm.active

// Give the output health signal a readable name

44

active: signal has-states:

{

up, // operation is nominal

down // major alarm condition

}

when: signal.up then: dig-out-2 => low

when: signal.down then: dig-out-2 => high // will float high (down)
// 1f disconnect or powered down.

// Give the tx relay control signal a readable name

active: tx-control has-states:

{

primary, // relay switched to primary; can transmit
backup // relay switched to backup; must not transmit

}

// default to primary if input disconnected.
when: dig-in-1.high then: tx-control => primary

when: dig-in-1l.low then: tx-control => backup

// Primary operation

// primary is in service.
composite-state: primary-operation.nominal =

NOT major-alarm.active AND tx-control.primary

// primary is out of service.

composite-state: primary-operation.down = major-alarm.active

// primary would be in service, but change-over relay is switched to
// backup.

composite-state: primary-operation.recovering =

NOT major-alarm.active AND tx-control.backup

© Tait International Ltd - August 2024 45

// Channel 1 has transmit enabled.

when: primary-operation.nominal then: { signal => up , channel => 1 }

// Channel 2 has transmit disabled.

when: primary-operation.down then: { signal => down , channel => 2 }
when: primary-operation.recovering then: { signal => up , channel =>
2}

// Signal down when go offline

when: operation.stopping then: { dig-out-2 => high, channel => 2 }

// End of program

© Tait International Ltd - August 2024 46

11.4 Backup Repeater Definitions, States and Logic

The secondary repeater TaskBuilder program needs a timeout state: Waiting for the channel
change to end any transmission before signaling the primary. The active variable backup
captures these states of the backup.

The example below uses digital output 13 to control the relay and signal the primary
base station.

From firmware release 3.25, TaskBuilder can use the coax relay driver pin 24.

To drive arelay such as TBCA03-10 or TBDAO3-10 your TaskBuilder program
should use digital output 13.

Program text

// Backup repeater definitions, states and logic

// Simple high-availability solution utilizes two repeaters (primary

// and backup)

// The backup supervises the primary via a primary signal connection

// indicating the health of the primary (up or down)

// The backup operates a change-over relay (tx-control output)

// Primary or backup repeaters are down if they have a major alarm
// (see text below for definition of major alarm)

// Secondary must not operate relay while either repeater is
// transmitting.

// 2021-04-15 Tait Communications Iain McInnes
/===

//
// Backup repeater definitions, states and logic.
//

// Major alarms result in the base station being out of service

// Can customize for individual deployments.
composite-state: major-alarm.active =
alarm-pa-calibration-invalid.active OR
alarm-pa-shutdown.active OR
alarm-pa-forward-power-low.active OR
alarm-lpps-pulse-absent.active OR
alarm-channel-invalid.active OR
alarm-simulcast-unsynchronized.active OR
alarm-receiver-calibration-invalid.active OR
alarm-hardware-configuration-invalid.active OR

alarm-25-mhz-synthesizer-out-of-lock.active OR

© Tait International Ltd - August 2024

47

alarm-61-44-mhz-synthesizer-out-of-lock.active OR
alarm-txf-synthesizer-out-of-lock.active OR
alarm-rx-synthesizer-out-of-lock.active

composite-state: major-alarm.inactive = NOT major-alarm.active

// Give the input health signal from the primary a readable name
active: primary has-states:

{

up , // operation is nominal

down // major alarm condition

when: dig-in-2.low then: primary => up

when: dig-in-2.high then: primary => down

// States of the backup

active: backup has-states:

{

enabled , // backup has taken control
disabling, // changing channel to disabled TX
disabled // control given to primary

}

timer: disabling interval: 1000 :ms // wait for channel change to
// disable TX

// Rules for backup
when: backup.enabled then:
{ dig-out-13 => low, channel => 1 } // enable TX when backup enabled

when: primary.up then: backup => disabling // hand control back to
// primary

when: major-alarm.active then: backup => disabling
when: backup.disabling then:
{ channel => 2, disabling.start } // disable TX and start the timer

when: disabling.expire then: backup => disabled // finished changing
// channel

when: backup.disabled then: dig-out-13 => high

// tx-control drives the change-over relay

© Tait International Ltd - August 2024 48

composite-state: tx-control.backup =

alarm.active

when: tx-control.backup then: backup

when: operation.stopping then:

{ dig-out-13 => high,
// offline

// End of program

© Tait International Ltd - August 2024

channel => 2 }

primary.down AND NOT major-

=> enabled

// Relinquish control when go

49

12

Function Code Variables

The function code variables are supported by Series 2 reciters running P25/AS-IP
firmware only.

Function codes are a series of values ranging from 0 to 255 that can be used to communicate
between base stations in a channel group.

There are two variables: function-code-send, and function-code-receive.

When one base station sends a function code using the function-code-send variable, all
base stations in the channel group can respond to the event generated by the corresponding
function-code-receive variable.

Example usage

The following example uses function codes to communicate a channel change event between
base stations in the channel group. Channel 13 or 14 is selected based on the state of digital
input 10.

// Collective channel change using function codes based on the state
// of digital input.

when: dig-in-10.high then: function-code-send.240
when: dig-in-10.low then: function-code-send.241
when: function-code-receive.240 then: channel => 13
when: function-code-receive.241 then: channel => 14

The example above can create conflicting states between base stations. More likely, what is
wanted is one base station responds to a digital input (as above), while the other base stations
may just respond to the respective function codes:

// Change channel on receiving the respective function code.
when: function-code-receive.240 then: channel => 13

when: function-code-receive.241 then: channel => 14

Usage notes

TaskBuilder can react to its own function-code-send events.

© Tait International Ltd - August 2024 50

13

Subaudible Signals

@ Supported by Series 2 reciters only.

rx-subaudible-detector is a stateless variable that allows a TaskBuilder script to respond
to specific subaudible signals on the base station receiver.

Rx subaudible detector variables are defined with a name and subaudible code:
rx-subaudible-detector: name code: subaudible-code

The range of values that subaudible-code can take is the same as that of encode/decode
CTCSS and DCS when configuring a signaling profile in the base station WebUI. Note that
CTCSS values do not contain decimal places (e.g. ctcss-1862 corresponds to the CTCSS
186.2 Hz tone).

When a signal is received which contains the subaudible code in the rx-subaudible-
detector definition, the variable will produce a detect event.

Usage notes
Up to four rx-subaudible-detector variables are allowed in the same script.

The detect event will only be produced while the base station is in a system type that supports
CTCSS and DCS. These are:

e analog conventional
« analog conventional with TSBK passthru
¢ DMR mixed mode

¢ P25 dual conventional

Received signals must match the RSSI & SINAD gating conditions in the current channel profile
for TaskBuilder to detect the respective subaudible signaling and trigger an event.

When detecting multiple distinct CTCSS tones, avoid using frequencies within 30 Hz, as they
can occasionally result in false detection. Lowering the subaudible deviation setting in the
current signaling profile reduces the chance of a false detection occurring.

Example usage

rx-subaudible-detector: rl code: ctcss-670
rx-subaudible-detector: r2 code: ctcss-719
rx-subaudible-detector: r3 code: ctcss-770

rx-subaudible-detector: r4 code: dcs-017

when: rl.detect then: { trace: "CTCSS-670 detected"}
when: r2.detect then: { trace: "CTCSS-719 detected"}
when: r3.detect then: { trace: "CTCSS-770 detected"}

when: r4.detect then: { trace: "DCS-017 detected"}

© Tait International Ltd - August 2024 51

14 Tx Generators

@ Supported by Series 2 reciters only.

Tx generator variables can generate a test signal while TaskBuilder is running

Similar to t imer variables, Tx generator variables are defined using a statement that provides
a user- defined name and duration:

e carrier-tx—-generator: tx-generator-name duration: expiration-
time

e fm-tx-generator: tx-generator-name duration: expiration-time
[subaudible: analog-subaudible]

e p25-phasel-tx—-generator: tx-generator-name duration: expiration-
time [tx-signal: signal-type]
Tx generators have two states: running, stopped.

Tx generators begin running when they raise a start event, and can be stopped prematurely
viaa stop event.

Raising a start event to a running Tx generator will reset the remaining duration.

After the expiration time passes following the last start event, the Tx generator produces an
expire eventand becomes stopped.

You can set the duration to an integer number of milliseconds, seconds, minutes, or hours
(denoted as :ms, : s, :min, and : hour respectively).

Optional parameters
An fm-tx-generator accepts a single optional parameter that can be supplied in addition to
its definition: subaudible.
e subaudible - instructs the base station to apply an analog subaudible encoding to the
test tone, such as CTCSS or DCS:

« therange of values that subaudible can take is the same as that of encode/decode
CTCSS and DCS when configuring a signaling profile in the base station WebUI. Note
that CTCSS values do not contain decimal places (e.g. ctcss-1862).

« alternatively, subaudible can be defined with the none token, which is its default
value, and results in no subaudible encoding in the analog domain.

Ap25-phasel-tx-generator accepts a single optional parameter that can be supplied in
addition to its definition: tx-signal:

» the following tx-signal types are valid: p25-standard, p25-tone, high-
deviation, low-deviation, silence,andmodulation-fidelity

* bydefault, p25-standardis used

The carrier-tx-generatorand fm-tx-generator variables can be used when the
channel profile is configured for the following system types:

© Tait International Ltd - August 2024 52

« DMR/MPT Applications:
¢ analog conventional
¢ DMR Mixed mode
¢ MPT Trunking

» P25/ ASIP Applications:
¢ analog conventional
« analog conventional with TSBK passthru

¢ P25 dual conventional

The p25-phasel-tx-generatorTx generator parameter is supported when the channel
profile is configured for the following system types:

e P25/ ASIP Applications:
¢ analog conventional with TSBK passthru
¢ P25 conventional
¢ P25 dual conventional
¢ P25 trunking

Usage notes

A tx-generator will not transmit when the system is configured for simulcast.

The base station must be online for a t x—-generator to operate.

A tx-generator will transmit at the configured transmit frequency for the current channel.
A tx-generator thatis running will expire if the current channel changes.

When a tx-generator raises a start event and is not the currently running tx-
generator, all other Tx generators will immediately expire:

« this is because the base station only has a single transmitter

An active stream from a tx-generator is given a lower priority than standard traffic. For
example, a call from a radio-user will pre-empt (pause) the test stream. The test stream will

resume and continue thereafter. During this period, the duration timer will continue to tick
down.

Example usage
The following example uses received subaudible codes to start and stop a tx generator.

We apply a subaudible to the running tx generator so that users do not unmute for it.

// Begin or end an analog tx generator upon receiving specific
// subaudible codes.

fm-tx-generator: analog-test duration: 30 :min subaudible: dcs-464
rx-subaudible-detector: start-test-tone code: dcs-465
rx-subaudible-detector: stop-test-tone code: dcs-466

given: analog-test.stopped when: start-test-tone.detect then: analog-
test.start

© Tait International Ltd - August 2024 53

given: analog-test.running when:
test.stop

when: analog-test.running then:

when: analog-test.stopped then:

© Tait International Ltd - August 2024

stop-test-tone.detect then:

trace: "Analog test started”

trace: "Analog test stopped”

analog-

54

15 Good TaskBuilder Style

The examples in this document are written in a particular style. The style mimics a state
transition diagram (which the examples also provide where useful).

The benefits of using a specific style are solutions that are more predictable, without losing any
expressiveness. They will be easier to design, to read, to pick-up defects, and which
communicate better their intention. All of these things result in solutions that are more likely to
be correct and do what you want.

Style recommendations are as follow:

1. Afew lines of comment at the beginning explain the purpose and provide a brief
summary of the operation of the program. For a working program (as opposed to a toy
exercise) it is useful for the comment block to identify the author and date.

2. Use active variable states to capture individual required system behaviors.
Use composite variables to capture combinations of input conditions

4. Give state variables a well defined purpose. Active variable declarations should have a
single-line comment stating the purpose:
// Tx control enables/disables transmission based on a timeout.

5. When defining states (active and composite), each state has a brief comment
summarizing the system condition or behavior that the state represents.

6. Use good, descriptive state and variable names. You know you have succeeded when
the program rules read naturally.

7. States will often have a timer that is associated with that state (waiting for timeout). The
timer is started as a state entry action, and provides a default exit event for the state.

8. Rules are organized by variable states, with a single line comment grouping the rules
associated with that state.

9. Where possible, have (changing channel, starting timers) actions occur on entry to the
state that is associated with those actions:
when: tx-control.lockout then: { channel => 2, lockout-
timer.start }

10. The subsequent rules for each state have the state name as a given: condition. The
action associated with the rule should be a simple state transition:
given: tx-control.transmitting when: tx-timer.expire then: tx-
control => lockout

11. Use vertical alignment to make it easy for the eye to distinguish distinct rule elements
(when:, then: and actions)

12. Where useful, additional comments add context to rules. Use rule comments sparingly. If
arule needs a comment to explain it, then ask whether the states are well partitioned and
the states and events are well named. See recommendation 5, above.

© Tait International Ltd - August 2024 55

Reference Section

This section of the manual contains the following reference materials:

TaskBuilder Language
TaskBuilder Grammar
TaskBuilder Inputs and Actions
TaskBuilder Alarm Names
Specifications and Limits

TaskBuilder Comparison With Task Manager

© Tait International Ltd - August 2024

56

16

TaskBuilder Language

16.1

16.2

16.3

16.4

© Tait International Ltd - August 2024

This chapter defines how TaskBuilder programs are expressed and what they
mean.

Syntax Highlighting

In this document, TaskBuilder statements are written in a fixed-width-font.

Names

TaskBuilder programs may assign names to active variables, states, events, and
timers.

Names may include underscore_and-minus characters: this is-
aValidIdentifier

Names are case-insensitive. In base station firmware release 3.20, names are
converted internally to lower case, and displayed (WebUI, logs) in lower case. In
future releases, names will still be case-insensitive, but the original case of the
input text will be preserved.

Keywords

TaskBuilder reserves the following keywords:

active: has-states: composite-state: and or not timer:
interval: :ms :s :min :hour given: when: then: raise trace:

TaskBuilder keywords are case-insensitive. They are displayed in lower case
independently of the case in the input text.

Comments
Comments in TaskBuilder help the reader understand the meaning of a program.
They have no effect on execution.

Comments begin with a double slash, and comprise any printable text up to the
end of the line:

// This is a comment

Comments can appear on the same line as TaskBuilder statements:

when: operation.running then: channel => 2 // base station
// online.

57

16.5

16.6

Active Variables

Active variables represent system state. Distinguishing states allows TaskBuilder

to do different things in response to an input event, depending on the state.

An active variable is a set of mutually-exclusive states:

active: a-variable has-states: { state-1, state-2, state-3

}

active: beacon has-states: { on, off }

When an active variable has a value of a given state, we say that state is active. In

a TaskBuilder program, an active state is written with a 'dot’ notation - all of the
following are true or false depending on whether the respective state is active:

a-variable.state-1
operation.running // base station online.
beacon.off

The initial value of an active variable when TaskBuilder starts is the first listed
state.

Composite Variables

A composite state is defined as a logical combination of other states:
composite-state: alarm.major =
alarm-PA-forward-power-low.active OR
alarm-PA-reverse-power-high.active OR
alarm-PA-vswr-high.active OR

alarm-25-MHz-synthesizer-out-of-lock.active

composite-state: alarm.minor =

(

alarm-PA-driver-temperature-high.active OR
alarm-PMU-temperature-high.active OR
alarm-PMU-battery-voltage-low.active OR
alarm-PMU-mains-supply-failed.active

)

AND NOT alarm.major

As with active states, composite states notionally belong to a composite variable.

The important differences between active and composite variables are:

© Tait International Ltd - August 2024

58

1. The set of states belonging to a composite variable are not necessarily
mutually exclusive, since they are defined by arbitrary logical functions.
Therefore more than one state belonging to a given composite variable may
be active at any time.

2. A TaskBuilder program may assign an active variable to become a given
state, but may not assign a composite to become a given state, since the
truthfulness of a composite state is given by the states from which itis
derived.

Other than those differences, active and composite states behave the same way.

16.7 Timer Variables

A timer variable is defined using the statement:

timer: timer-variable-name interval: expiration-time
Timers have states: { stopped, running }

Timers begin running when they are senta start event.

Sending a start eventto a running timer restarts the timer.

After the expiration time following the last start event, the timer produces an
expired eventand becomes stopped.

16.8 Counter Variables

@ Supported by Series 2 reciters only.

A counter is a kind of variable that can be used to 'count' a number of events and
react to reaching a certain state, represented by a number between 0 and 65535.

They are defined using the following statement:
counter: counter-—-name

Counters can be incremented by an up event, decremented by the down event, or
reset to 0 via the reset event.

They can also have their state explicitly assigned via the become (=>) operator.

Examples
Example 1 - defining a counter and changing its state:

// Create a counter, assign its state to "3", and react to
// that state.

counter: mycounter

when: operation.running then: mycounter => 3

when: mycounter.3 then: trace: "My counter is now 3"

© Tait International Ltd - August 2024 59

This script is functionally identical to:

counter: mycounter

when: operation.running then: { mycounter.up, mycounter.up,

mycounter.up }

when: mycounter.3 then: trace: "My counter is now 3"

Example 2 - raise a custom alarm when more than 5 QOS jitter events are
received, and move the base station out of a particular channel group:

// Define the counter, with an active to manage the maximum

// number of events
counter: gos-jitter-counter

active: gos-jitter-max has-states: { unreached, reached }

// Increment counter in response to gos-jitter alarm
// becoming active

given: gos-jitter-max.unreached when: alarm-gos-
jitter.active then: gos-jitter-counter.up

// Raise an alarm upon reaching a count of 5 events and
// change the channel.

given: gos-jitter-max.unreached when: gos-jitter-counter.5

then:

{

gos-jitter-max => reached,
channel => 5,
alarm-custom-alarm-1.raise

}

// Reset this demonstration script at running time.

when: operation.running then: alarm-custom-alarm-1l.clear

Example 3 - a countdown implemented via use of a counter and an active
managed by the "given" precondition (this is to avoid reacting to the counter's
initial value of 0):

// A counter that decrements every second, managed via a

// controller to determine whether the countdown is active.

counter: countdown
active: countdown-active has-states: {false, true}

timer: countdown-timer interval: 1l:s

© Tait International Ltd - August 2024

60

// You may write the state of the counter to directly.

when: operation.running then: { countdown => 10, countdown-
timer.start }

// Handle the countdown via a Given statement

given: countdown-active.false when: countdown-timer.expire
then:

{

countdown-active => true,
countdown-timer.start,

}

given: countdown-active.true when: countdown-timer.expire
then:

{
countdown.down,
countdown-timer.start,

}

// If the countdown is active, when we reach zero, react.
given: countdown-active.true when: countdown.0 then:

{

trace: "Countdown finished.",

countdown-timer.stop,

countdown-active => false

}

A user of the above script could also write logic to react to any number between 1
and 10 (such as setting and unsetting thresholds), thereby providing utility that a
timer cannot achieve with just a running state.

Usage notes

A counter has a maximum of 65535. When this maximum is exceeded, it will loop
back to 0 and output a warning in the base station logs.

As with other named variables one cannot have duplicate names for a counter in
the same script.

A counter will default to 0 when created.

© Tait International Ltd - August 2024 61

16.9 Standard Variables

Atimer is an example of a TaskBuilder standard variable. Standard variables have
pre-defined names and behaviors. TaskBuilder Inputs and Actions on page 69
defines the variables making up the TaskBuilder standard library.

16.10 TaskBuilder Rules

The when: then: rule
The when: then: ruleis written

when: variable.event then: action

or

when: variable.event then: { action-1, action-2, ... }

The rule defines the actions to occur in response the given event, for example:

when: debounce.expire then: channel => 1 // go to channel
// 1 after debounce time.

The => symbol is the 'become' operator, see Become a (new) state on page 64.

The given:when: then: rule
The given:when:then: rule is written

given: var-1l.state when: var-2.event then: action

or

given: var-1l.state when: var-2 then: { action-1, action-2,

}

The given:when:then: rule adds an additional condition to the when: then:
rule. TaskBuilder only performs the listed actions if the given state is active when
the event occurs.

The state referenced by the given: clause of the given:when:thenruleis
always a fully qualified state name; that is, it follows the form variable-
name.state—-name.

Rule terminology

when:then: rules are always triggered when the event in the rule's when :
clause occurs. given:when:then: rules are triggered when the rule state is

© Tait International Ltd - August 2024 62

also active when the rule event occurs. Triggering a rule causes TaskBuilder to
carry out the rule actions.

16.11 Events

Events are triggers that cause actions to occur. Events are generated by a raise
action. Events carry no information other than their identity (and implicitly, their
time sequence).

Events do not have to be explicitly defined; when: and then: clauses make it
clear when a name should refer to an event.

16.12 State Entry Events

Good TaskBuilder practice is to identify and define states that represent
characteristic behaviors, since that is how people think about states. To assist that
idiom, TaskBuilder allows a when: clause to refer to a state name. The rule will
be triggered when the variable enters that state:

when: var.state then: { actions-associated-with-a-state }

A state-name appearing in a when: clause refers to the event that is raised
automatically on entering that state.

Events can be used without having to be declared. An example fragment is:

active: a-variable has-states: { state-1, state-2, state-3

}
when: some.condition then: raise a-variable.next

given: a-variable.state-1 when: a-variable.next then: a-
variable => state-2

Event lifetime

The lifetime of an event is the time between the event being raised, and the time
when all rules referencing the event may be triggered (a rule may not be triggered
if the given: clause is not satisfied at the time of the event). Events are atomic,
and can be queued if events are occurring more quickly than the associated rules
can be matched and executed. It is possible for multiple instances of the same
event to be queued waiting to trigger their associated rules. In the most severe
case, events may be discarded if it is not possible to queue the event.

16.13 Actions

TaskBuilder rules have either a single action:

when: variable.event then: action

or a list of actions:

when: variable.event then: { action-1, action-2, ... }

In the case of the list, the actions are carried out in order of the listed sequence.

© Tait International Ltd - August 2024 63

Possible TaskBuilder actions are raise event(s) and change state(s):

Raise an Event
Use the keyword raise, orjust write the event:
raise dig-out-1.toggle

debounce.start

Become a (new) state

The become operator '=>"' causes a TaskBuilder variable to change its state, if it
is one that can be changed from TaskBuilder:

Variables that can be changed by a TaskBuilder program are: user-defined active
variables, timers, standard library output variables.

Examples:
when: debounce.expired then: channel => 1
when: alarm.minor then: dig-out-5 => low

Composite variables and standard library inputs may not be written to using the
become operator.

If a variable already has the same state as the target of the become operation, the
existing state is re-entered, and TaskBuilder automatically raises associated state
entry event.

Standard library input objects that generate inputs into TaskBuilder do not
generally re-enter existing states. For example the rule,

when: dig-in-1.low then: do-stuff
will only be triggered on actual transitions of the input.

Similarly, asking standard library variables to become the same state they are
already in will not necessarily cause any change to the base station. The following
program does not necessarily cause the base station channel to be continuously
re-initialized:

timer: repeating interval: 1 :s

when: operation.running then: { channel => 1,
repeating.start }

when: repeating.expire then: { channel => 1,
repeating.start }

Trace actions

One TaskBuilder action allows you to trace the execution of your program with a
message that you specify. The trace message is written to the output log, and can
report the current values of TaskBuilder variables.

Here is the set channel program from the example above with a trace message
added:

// TaskBuilder Example 2: include a trace message

© Tait International Ltd - August 2024 64

when: operation.running then:
{

channel => 2,

trace: "channel is ${channel}"

}

16.14 Language Design Goals

The language here arose from the goals of:
1. Solve the same problems as Task manager

2. Orient the language around states and events: The 'active object' paradigm
is robust, expressive, simple, well known, and fits base station internal execution.

3. Be expressive: The language should read naturally to people who are not
expert TaskBuilder programmers without undue effort.

4. Be concise: Minimize the amount of stuff that is not directly involved in
expressing the problem domain solution.

5. Minimize punctuation: because of (3) above.

6. Minimize declarations: because of (4) above. Events for example, are
declared by using them.

7. Base stations mechanisms are expressed in the idioms of the language:
Base station inputs and actions are defined in terms of TaskBuilder standard
variables which interact with the running program in the ways described in this
doc.

© Tait International Ltd - August 2024 65

17 TaskBuilder Grammar

This chapter defines the rules for a well formed TaskBuilder program.

Notation here is Wirth syntax notation.

Key to grammar
{ }
[]
(stuff)
|

|
"stuff"
<>

Language clauses
TaskBuilder-script

statement

active-declaration
qualifier-1list
composite declaration
sum

product

term
timer-declaration

rule

action-list
action
timer-interval
trace-statement

interpolated-variable

rx-subaudible-detector-
declaration

test-generator-declaration

© Tait International Ltd - August 2024

repeat zero or more times
option

group stuff

anything but

separate alternatives
literal

unprintable literal

{statement}
active-declaration

| composite-declaration
| timer-declaration

| rule

| trace-statement

"active:" var-name "has-states:" qualifier-list
"{" gqualifier { "," qualifier } [,] "}"
"composite-state:" qualified-name "=" sum

product { "OR" product }

term { "AND" term }

["NOT"] (qualified-name | " (" sum ")")
"timer:" var-name "interval:" timer-interval
["given:" qualified-name]

"when:" qualified-name

"then:" (action | action-list)

"{" action { "," action } [,] "}"

["raise"] qualified-name

| [var-name] "=>" qualifier

digits (":ms" | ":s" | ":min" | ":hour")

"trace:" """ { char | interpolated-variable } """
"S${" var-name | qualified-name "}"

"rx-subaudible-detector:" var-name
"code:" subaudible-token

carrier-tx-generator | fm-tx-generator

66

carrier-tx-generator

fm-tx-generator

p25-phasel-tx-generator

analog-subaudible

© Tait International Ltd - August 2024

p25-phasel-tx-generator

"carrier-tx-generator:" name

"duration:" expiration-time

"fm-tx-generator:" name

"duration:" expiration-time

[

"p25-phasel-tx-generator:" name

"subaudible:" analog-subaudible]

"duration:" expiration-time

"tx-signal:" ["p25-standard" | "p25-tone"
"high-deviation" | "low-deviation™ | "silence"
"modulation-fidelity"]

"none" | "ctcss-670" | "ctcss-694"™ | "ctcss-719"
"ctcss-=744" | "ctcss-770" | "ctcss-797"
"ctcss—-825" | "ctcss-854" | "ctcss-885"
"ctcss—-915" | "ctcss-948" | "ctcss-974"
"ctcss-1000" | "ctecss-1035" | "ctcss-1072"
"ctcss—-1109" | "ctcss-1148" | "ctcss-1188"
"ctcss-1230" | "ctecss-1273" | "ctcss-1318"
"ctcss-1365" | "ctecss-1413" | "ctcss-1462"
"ctcss—-1514" | "ctcss-1567" | "ctcss-1598"
"ctcss-1622" | "ctcss-1655" | "ctcss-1679"
"ctcss-1713" | "ctcss-1738" | "ctcss-1773"
"ctcss—-1799" | "ctcss—-1835" | "ctcss-1862"
"ctcss—-1899" | "ctecss-1928" | "ctcss-1966"
"ctcss—-1995" | "ctess-2035" | "ctcss-2065"
"ctcss-2107" | "ctecss-2181" | "ctcss—-2257"
"ctcss—-2291" | "ctcss-2336" | "ctcss-2418"
"ctcss-2503" | "ctcss-2541" | "dcs-017"
"dcs-023" | "dcs-025" | "dcs-026" | "dcs-031"
"dcs-032" | "dcs-036" | "dcs-043" | "dcs-047"
"dcs-050" | "dcs-051" | "dcs-053" | "dcs-054"
"dcs-065" | "dcs-071" | "dcs-072" | "dcs-073"
"dcs-074" | "dcs-114" | "dcs-115" | "dcs-11lo6"
"dcs-122" | "dcs-125" | "dcs-131" | "dcs-132"
"dcs-134" | "dcs-143" | "dcs-145" | "dcs-152"
"dcs-155" | "dcs-156" | "dcs-162" | "dcs-165"
"dcs-172" | "dcs-174" | "dcs-205" | "dcs-212"
"dcs-223" | "dcs-225" | "dcs-226" | "dcs-243"
"dcs-244" | "dcs-245" | "dcs-246" | "dcs-251"
"dcs-252" | "dcs-255" | "dcs-261" | "dcs-263"
"dcs-265" | "dcs-266" | "dcs-271" | "dcs-274"
"dcs-306" | "dcs-311" | "dcs-315" | "dcs-325"
"dcs-331" | "dcs-332" | "dcs-343" | "dcs-346"
"dcs-351" | "dcs-356" | "dcs-364" | "dcs-365"
"dcs-371" | "dcs-411" | "dcs-412" | "dcs-413"
"dcs-423" | "dcs-431" | "dcs-432" | "dcs-445"
"dcs-446" | "dcs-452" | "dcs-454" | "dcs-455"
"dcs-462" | "dcs-464" | "dcs-465" | "dcs-466"
"dcs-503" | "dcs-506" | "dcs-516" | "dcs-523"

67

Language tokens
qualified-name
qualifier
var-name
name
name-char
digits
comment
name

char

© Tait International Ltd - August 2024

| "dcs-526" | "dcs-532" | "dcs-546"
| "dcs-606" | "dcs-612" | "dcs-624"
| "dcs-631" | "dcs-632"

= var-name "." qualifier
= name | digits
= name

= letter { name-char }

= digit | letter | "-" | " "
= digit {digit}

="//" { '<newline> }

= letter { name-char }

= <any printable character>

"dcs-565"
"dcs-627"

68

18

TaskBuilder Inputs and Actions

What is it possible to do using TaskBuilder?

18.1

TaskBuilder Standard Variables

TaskBuilder inputs and actions are presented as a set of active variables each having distinct
states and events. Whether a variable is primarily intended for input or output is a function of
the events and states of that variable. The base station current channel for example is both an

input and an output.

Notes:

18.2

Standard vari-

1.
2.

All variables generate a state-change event when the respective state becomes active.

Variables with writable states (such as channel) can be changed from within
TaskBuilder. They serve as TaskBuilder outputs.

All variables states are readable by TaskBuilder programs (can write rules that are
triggered by the state condition). They serve as TaskBuilder inputs.

Alarm names are listed here: TaskBuilder Alarm Names.

Non-writable

Writable

Events

Table of TaskBuilder Standard Variables

The following table lists the standard variables and their associated behaviors.

Events

able Summary states states accepted | generated Parameters
alarms jtat.e Oftthg disabled inactive, raise,
(custom)a esighate sabre active clear
alarms
State of the inactive,
alarms (non- . .
designated active,
custom)3 ,
alarms disabled
call- P25 call 1 1 change
profile properties
aAlarm names are defined inTaskBuilder Alarm Names
© Tait International Ltd - August 2024 69

Raw HTML files/DOC-57944 TaskBuilder Alarm names.html

Standard vari-

Non-writable

Writable

Events

Events

able Summary states states accepted | generated Parameters
carrier-tx-
generator:
<name-string>
Starrt]' duration:
‘ Generate start the tx expire- <integer>
carrier-tx- | unmodulated stopped, generator the time is
generator carrier test sig- running stop - up followed by:
nal stop the tx .
generator ‘ms
(milliseconds)
:s (seconds)
:min (minutes)
:hour (hours)
Current base
channel station chan- 1 .. 1000 up, down | change
nel
Number of u
1% .
times some- 0, 1 counter:
counter . 65535 down, < tring>
thing has reset name-string
happened
change -
dig-in-1.. Digital i hiah. 1 the input
dig-in-12 igital inputs igh, low state
changed
toggle -
dig-out- change
1.. Digital outputs high, low high to
dig-out-13 low and
vice versa

© Tait International Ltd - August 2024

70

Standard vari-

Non-writable

Writable

Events

Events

able SUIUED states states accepted generated Rasmees
fm-tx-
generator:
<name-string>
duration:
<integer>
followed by:
‘ms
(milliseconds)
start- :s (seconds)
Qenerat_e test start the tx ' - it
signal with expire- :min (minutes)
fm-tx-gen- 9 stopped generator
g optional pped, the time is :hour (hours)
erator baudibl running stop - up
Zﬁcigml e stop the tx (optional)

9 generator subaudible:
ctcss-670,
ctcss-693 ...
ctcss-2541,
dcs-017 ...
dcs-754,
none*

* default
Indicate a
function- received func- 0, 1
code- tion code 255
receive between base
stations
Send the des-
function- Itgnatecéfunc- 0, 1 0, 1
code-send lon code 255 255
between base
stations
running-
Initialization respond to
operation and exit startup
actions. stopping-

respond to exit

© Tait International Ltd - August 2024

71

Standard vari-

Non-writable

Writable

Events

Events

Summa Parameters
able Y states states accepted generated
p25-phase1-
tx-generator:
<name-string>
duration:
<integer>
followed by:
‘ms
(milliseconds)
start - :s (seconds)
P 1 Gzege[]ate a1 start the tx expire :min (minutes)
p25-phasel- p25 phase -]
: stopped, enerator L :hour (hours
tx-gen- test signal for p? 9 the time is ()
X) running stop - .
erator various tx. sig- stop the tx up (optional) tx-
nal variations generator signal:
p-25
standard*,
p25-tone,
high-deviation,
low-deviation,
silence,
modulation-
fidelity
* default
closed,
open,
rx-gate- RF received subaudible
state signal present | -bypassed,
carrier-
bypassed
Allow
rx-— ived normal,
receive
operation . disabled
signal
i normal,
Receiver i
. subaudible-
rx-squelch- monitor -
. bypass,
mode override .
. carrier—
receiver gate
bypass

© Tait International Ltd - August 2024

72

Standard vari- Non-writable | Writable Events Events
Summary Parameters
able states states accepted generated
rx-subaudible-
detector:
<name-string>
Produces an code:
rx-subaud- eventin ctcss-670
ible— response to a detect
detected
detector baudibl
subaudible ctess-2541
code
dcs-17
dcs-754
start -
start the .
Generate ! expire-
. stopped, timer . .
timer event after i the time is
io . running stop - u
specified time stop the p
timer
single-
550
single-
Control base 2050,
tone-remote station by dual-
tone signaling 550-550
dual-
2050~
2050
tone- Allow tone
te-ke remote keyed normal,
remo - -
Y y disabled

operation

signal

tone-
remote-key-
state

Tone remote
transmit
signal present

inactive,

active

© Tait International Ltd - August 2024

73

Standard vari-

able

Summary

Non-writable
states

Writable
states

Events
accepted

Events
generated

Parameters

tx-inputd

Request to
transmit is
present
(analog or
digital line
interface,
diagnostic
test, CWID.
tx-input is
different from
tx-status if
transmission
is prevented
(disabled by
configuration
or
TaskBuilder).

de-keyed,
keyed

tx-key-

operation

Allow Tx Key
(analog line)

normal,
disabled

tx-key-
state

Analog line
signal present

inactive,

active

tx-

operation

Allow transmit
signal

normal,
disabled

tx-status

Transmitting

de-keyed,
keyed

aThe synchronized transmit is the only diagnostic test that can set tx-input to keyed, since all the others take the base off-

line

© Tait International Ltd - August 2024

74

19 TaskBuilder Alarm Names

This chapter defines the alarm names used by TaskBuilder.

WebUI name TaskBuilder active variable name
PA PA
PA not detected alarm-pa-not-detected

Firmware invalid
Calibration invalid
Forward power low
Power foldback
Reverse power high
Shutdown

VSWR high

Driver current high
Final 1 current high
Final 2 current high
Current imbalance
Supply voltage low
Supply voltage high
Driver temperature high
Final 1 temperature high

Final 2 temperature high

alarm-pa-firmware-invalid
alarm-pa-calibration-invalid
alarm-pa-forward-power-low
alarm-pa-power-foldback
alarm-pa-reverse-power-high
alarm-pa-shutdown
alarm-pa-vswr-high
alarm-pa-driver-current-high
alarm-pa-final1-current-high
alarm-pa-final2-current-high
alarm-pa-current-imbalance
alarm-pa-supply-voltage-low
alarm-pa-supply-voltage-high
alarm-pa-driver-temperature-high
alarm-pa-final1-temperature-high

alarm-pa-final2-temperature-high

© Tait International Ltd - August 2024

75

WebUI name

TaskBuilder active variable name

PMU

PMU not detected
Firmware invalid
Mains supply failed
Power up fault
Shutdown imminent
Temperature high
Battery protection mode
Battery voltage low
Battery voltage high
Output current high

Output voltage low

PMU

alarm-pmu-not-detected
alarm-pmu-firmware-invalid
alarm-pmu-mains-supply-failed
alarm-pmu-power-up-fault
alarm-pmu-shutdown-imminent
alarm-pmu-temperature-high
alarm-pmu-battery-protection-mode
alarm-pmu-battery-voltage-low
alarm-pmu-battery-voltage-high
alarm-pmu-output-current-high

alarm-pmu-output-voltage-low

Output voltage high alarm-pmu-output-voltage-high
System System

Ambient temperature low
Ambient temperature high
External reference absent
1PPS pulse absent

QoS jitter

QoS lost packets
Transmit buffer

Fallback controlled
Duplicate node priority
NTP unsynchronized

Site synchronization unaligned
TxR cable absent

Cartesian loop unstable

alarm-ambient-temperature-low
alarm-ambient-temperature-high
alarm-external-reference-absent
alarm-1pps-pulse-absent
alarm-qos-jitter
alarm-qos-lost-packets
alarm-transmit-buffer
alarm-fallback-controlled
alarm-duplicate-node-priority
alarm-ntp-unsynchronized
alarm-site-synchronization-unaligned
alarm-txr-cable-absent

alarm-cartesian-loop-unstable

© Tait International Ltd - August 2024

76

WebUI name

TaskBuilder active variable name

Reciter

Channel invalid

Temperature high

Simulcast unsynchronized
Transmitter calibration invalid
Receiver calibration invalid
Hardware configuration invalid
25 MHz synthesizer out of lock
61.44 MHz synthesizer out of lock
TxF synthesizer out of lock
TxR synthesizer out of lock

Rx synthesizer out of lock

Receiver unsynchronized

Reciter

alarm-channel-invalid
alarm-reciter-temperature-high
alarm-simulcast-unsynchronized
alarm-transmitter-calibration-invalid
alarm-receiver-calibration-invalid

alarm-hardware-configuration-invalid

alarm-25-mhz-synthesizer-out-of-lock

alarm-61-44-mhz-synthesizer-out-of-lock

alarm-txf-synthesizer-out-of-lock
alarm-txr-synthesizer-out-of-lock
alarm-rx-synthesizer-out-of-lock

alarm-receiver-unsynchronized

Custom

CUSTOM - Alarm 1
CUSTOM - Alarm 2
CUSTOM - Alarm 3
CUSTOM - Alarm 4
CUSTOM - Alarm 5
CUSTOM - Alarm 6
CUSTOM - Alarm 7
CUSTOM - Alarm 8
CUSTOM - Alarm 9
CUSTOM - Alarm 10
CUSTOM - Alarm 11
CUSTOM - Alarm 12

Custom
alarm-custom-alarm-1
alarm-custom-alarm-2
alarm-custom-alarm-3
alarm-custom-alarm-4
alarm-custom-alarm-5
alarm-custom-alarm-6
alarm-custom-alarm-7
alarm-custom-alarm-8
alarm-custom-alarm-9
alarm-custom-alarm-10
alarm-custom-alarm-11

alarm-custom-alarm-12

Front panel
Fan 1

Fan 2
Fan 3
FP not detected

Invalid firmware

© Tait International Ltd - August 2024

Front panel
alarm-fan-1

alarm-fan-2
alarm-fan-3
alarm-front-panel-not-detected

alarm-front-panel-invalid-firmware

77

Referencing an alarm that is not defined on that platform means that the TaskBuilder program
will fail with a parse error. Examples are:

 alarm-system-site-synchronization-unaligned with DMR firmware

 alarm-front-panel-not-detected with TB7300 base station

© Tait International Ltd - August 2024 78

20

Specifications and Limits

Parameter

Value

Description

Event response
latency

100 ms nominal

The time that TaskBuilder may take to respond to an event. May
increase if base station is heavily loaded

Throughput

50 events per
second nominal

Number of rules that can be triggered. May decrease if base sta-
tion is heavily loaded

Maximum out-
standing events

20

Events may be discarded if there are more pending events than
the value listed

© Tait International Ltd - August 2024

79

21 TaskBuilder Comparison With Task

Manager

211 Comparisons with Task Manager
Task Manager, on previous Tait base stations, provides an approximately equivalent facility to
TaskBuilder:

* active variables are the foundation of TaskBuilder, with states and events attached to
active variables. Variables are active because the TaskBuilder design encourages you to
associate behaviors (actions) with each distinct variable state.

» in TaskBuilder, the difference between states (which establish conditions for rules) and
events (which trigger rules) is explicit

« composite states derive directly from Task Manager. User programs could synthesize
the equivalent states explicitly using events, but it would be clumsy.

e Task Manager has a greater range of inputs and actions

« the design of TaskBuilder pays attention to the naturalness with which program rules can
be articulated

 typing program text is still less intuitive and more error prone than selecting input rules
and actions using the service kit WebUI

« the performance envelope of TaskBuilder is controlled. The current rate of event
processing is approximately 50 events per second (see the base station specifications
manual).

21.2 General Elements

This table lets you compare Task Manager and TaskBuilder and find the equivalents in each
language.

The entries in the table are not necessarily direct equivalents but are ways to achieve the same
result.

Task Manager equivalent TaskBuilder equivalent Notes

Make programs more read-

// This i1s a comment
able

Comment

Multiple actions:

when: event then: { Do multiple things in

Custom action I
response to a condition

action-1, action-2 }

Enable / disable task

comment out program text to
ignore it

Debugging and control
over the running program

© Tait International Ltd - August 2024

80

21.3

Task Manager equivalent TaskBuilder equivalent Notes
hen: t then:
Zci:onevfien . irtlate The basic unit of logic in
Task d) Task Manager and Task
when: event then: .
. Builder
action
Expressed within TaskBuilder Interact with the running
. rule: .
Task action program or with the base
when: event then: -
) station.
action
Edit using the in-built
Task list Program file TaskBuilder editor or edit
off-line using a text editor

Task Manager Inputs

A number of TaskBuilder variables appear as both inputs and outputs, because TaskBuilder

programs can both change standard variables, and respond to those changes.

When a single Task Manager input has multiple corresponding TaskBuilder values, logical
combinations of Task Manager custom inputs provide the equivalents.

seized

tx-key-state.inactive

Task Manager equivalent TaskBuilder equivalent Notes
Alarm inputs alarm standard variables
Analog line interface channel | tx~key-state.active Report the state of

analog line Tx key input

Analog line interface tone
remote detected

tone-remote,

tone-remote-key-state

TaskBuilder variables
capture function codes

and key tone

Analog line unlocked

tx-key-
operation.normal
tx-key-
operation.disabled

Allow Tx key (analog
line)

. Report the kind of RF
Analog received none . :
received signal
Analog transmitted none Report.the k'f‘d of RF
transmitted signal
APCO received none Report the kind of RF

received signal

© Tait International Ltd - August 2024

81

Task Manager equivalent

TaskBuilder equivalent

Notes

APCO transmitted none Report-the k'f‘d of RF
transmitted signal
Automatic CWID unlocked none Respond to changes in
CWID
. Control over PMU aux-
Auxiliary supply unlocked none

iliary supply

Channel changed,

Select channel

channel.change,

channel

Respond to a channel
change or to a specific
channel

Counter at maximum

my—-counter.nnn

Respond to a specific
counter value.

Function is not identical.
If TaskBuilder program
needs to prevent a
counter continuing to
increment, program must
provide its own logic.

Custom input

composite-state:
alarm.major =

Arbitrary combination of
input states

Custom inputs

Composite states

TaskBuilder composite
states create new states
out of arbitrary com-
binations of existing
standard and active vari-
ables

DFSI connected

none

Respond to presence of
a DFSI connection

Digital input high

dig-in-n.high

dig-in-n.low

Report the state of digital
input

Digital input value

composite: dig-value-3
= dig-in-0 AND dig-in-
1

Respond to the numeric
value of set of inputs

Digital output high

dig-out-n.high

dig-out-n.low

Report the state of digital
output

Flag

active: temp has-
states: { hot, cold }

User defined variable
with two states

© Tait International Ltd - August 2024

82

Task Manager equivalent

TaskBuilder equivalent

Notes

Function code received

function-code-receive

Function code event
from this or another base
station

Function code sent

function-code-send

Function code event to
another base station

Monitor on

rx-squelch-mode.normal

rx-squelch-
mode . subaudible-bypass

rx-squelch-
mode.carrier-bypass

Receiver squelch mode

Network element in Run mode

operation.running

operation.stopping

Allows a program to
respond to start-up and
shut-down

PA carrier present

tx-status.keyed

tx-status.de-keyed

Report whether base sta-
tion is transmitting

Received NAC

rx-subaudible-
code.nac-nnn

Received P25 subaud-
ible signaling

Receiver unlocked

rx-operation.normal

rx-operation.disabled

Control over receiver

RF repeat

none

RF repeat state

Rx Gate valid

rx—-gate-state.closed

rx-gate-state.open

Respond to received RF
signal

Subaudible encoding
unlocked

none

Control over transmitted
subaudible signaling

Subaudible tone detected

rx-subaudible-
code.ctcss—-nnn

rx-subaudible-
code.dcs-nnn

rx—-subaudible-
code.colour-code-nn

rx-subaudible-
code.nac-nnn

© Tait International Ltd - August 2024

83

214

Task Manager equivalent

TaskBuilder equivalent

Notes

Subaudible/NAC decoding
unlocked

rx-gate-
state.subaudible-
bypassed

rx-gate-state.closed

rx—-gate-state.open

Monitor squelch

Timer expired

my-timer.start
my-timer.stop

my-timer.expire

Interact and respond to
timers

Transmitter unlocked

tx-operation.normal

Control over transmit

present

tx-operation.disabled signal path
Trunking control channel none
Trunking site controller

none

Vote won by Analog line

tx-key-state.active

tx-key-state.inactive

TaskBuilder tx-key-
state is not a direct
equivalent. It reports
whether a signal is
present, not whether the
same signal is being
transmitted.

Vote won by Control panel none
Vote won by Digital line none
Vote won by RF none

Task Manager Outputs

Task Manager outputs (equivalently, TaskBuilder actions) allow Task Manager (TaskBuilder) to
interact with the base station repeater.

TaskBuilder rules may react to any of the actions listed here

Task Manager equivalent

TaskBuilder equivalent

Notes

Go to channel
Go to next channel

Go to previous channel

channel => 10
channel.up

channel.down

Change channel

© Tait International Ltd - August 2024

84

Task Manager equivalent

TaskBuilder equivalent

Notes

Go to call profile

call-profile => 10

User or individual call with
MDC-1200 signaling at ana-
log line

Go to channel group

none

Selection of channel group
profile

Go to RF service profile

none

Selection of service profile
associated with analog line

Set digital output high
Set digital output low
Toggle digital output

dig-out-01 => high
dig-out-01 => low

dig-out-01.toggle

Drive the digital output

Fan test now

none

Perform a fan test

Analog line lock

tx-key-operation =>
normal
tx-key-operation =>
disabled

Override operation of ana-
log line

Automatic CWID lock

none

Override operation of
CWID

Auxiliary supply lock

none

Control the PMU auxiliary
supply output

Channel group lock

channel => 11

Enable or disable channel
group operation. Can
achieve in TaskBuilder by
changing channel.

rx-operation =>

normal
Reciter lock Control over RF receive
rx-operation =>
disabled
. Control over transmitted
Subaudible encode lock none

subaudible signal

Subaudible/NAC decode lock

Monitor (squelch)

rx-squelch-mode =>
normal

rx-squelch-mode
=>subaudible-bypass

rx-squelch-mode
=>carrier-bypass

Squelch mode

© Tait International Ltd - August 2024

85

Task Manager equivalent

TaskBuilder equivalent

Notes

Transmitter lock

tx-operation =>
normal

tx-operation =>
disabled

Override the transmitter

RF repeat

none

Control over RF repeat

Send function code

function-code-
send.153

Send a function code

Increment counter

my-counter.up

Interact with counter
variables.

Decrement counter my-counter.down TaskBuilder program must
Reset counter my-counter.reset provide its own logic to limit
the counter value if wanted.

Setflag

temp => hot Interact with user-defined
Clear flag :

temp => cold variables
Toggle flag
Start timer my-timer.start Interact with user defined
Stop timer my-timer.stop timers

Raise custom alarm

Clear custom alarm

alarm-custom-alarm-—
l.raise

alarm-custom-alarm-—

TaskBuilder custom alarm
severity is not configurable

l.clear
Transmit CWID now none (;Qnt|puous Wave Iden-
tification
Suspend Sync Tx test
none Synchronized transmit test

Resume Sync Tx test

tx-key-operation =>

Lock TM tx Key normal Override operation of ana-
Unlock TM tx Key tx-key-operation => log line (Tx key)

disabled

carrier-tx-generator:

beacon duration:

30:seconds Generate a test trans-
none

when: rx-subaudible-
code.ctcss—-825 then:
beacon.start

mission

© Tait International Ltd - August 2024

86

22 Change History

Release 3.65

Clear button added to Monitor > TaskBuilder.

The following Series 2 reciter variables have been added:

counter - number of times something has happened
function-code-receive -receive events from other base stations
function-code-send - send events to other base stations

rx-subaudible-detector - produces an event in response to a detected subaudible
code

carrier-tx-generator - generate an unmodulated carrier test signal
fm-tx-generator - generate a test signal with optional subaudible encoding

p25-phasel-tx-generator - generate a P25 Phase 1 test signal for various tx signal
variations

Other reciters will generate the error message "not supported on this hardware version".

Release 3.60

tx-operation - allow transmit signal
rx—-operation - allow received signal
rx—-gate-state - RF received signal present
tx-key-operation - allow Tx Key (analog line)
tx-key-state - analog line signal present

tone-remote-key-operation - controls whether the tone-remote-key is disabled or
works normally (according to the configuration)

tone-remote-key-state - tone remote transmit signal present

rx-squelch-mode - receiver monitor - override receiver gate

Release 3.55

tone-remote - provides for console control via tone signaling. Applies to P25/AS-IP
conventional operation

call-profile - provides P25 call information for consoles using the analog line
interface

© Tait International Ltd - August 2024 87

Release 3.35

Reference the new Tait corporate website domain www.taitcommunications.com.

Release 3.25

e dig-out-13is an output-only digital pin with the ability to sink current for driving a relay
* trace: - statement allows programs to write directly to the log

« WebUI: [Undo] button allows you to revert to the last good TaskBuilder program

Release 3.20

TaskBuilder is intended for general release.

Leading zeroes

In base station release 3.20, some of the standard variable names have been changed to
remove leading zeroes, for example;

e channel.023 becomes channel.23
e dig-in-03 becomesdig-in-3

e dig-out-03 becomes dig-out-3

Case sensitivity

Names are case-insensitive. In release 3.20, names are converted internally to lower case, and
displayed (WebUI, logs) in lower case. In future releases, names will still be case-insensitive,
but the original case of the input text will be preserved.

TaskBuilder keywords are case-insensitive. They are displayed in lower case independently of
the case in the input text.

TaskBuilder exit event

TaskBuilder can respond to exit events as well as start up events. On TaskBuilder exit,
TaskBuilder will execute the actions for rules that include a when: operation.stopping
clause.

TaskBuilder control over custom alarms

TaskBuilder program actions can now raise or clear base station custom alarms.

© Tait International Ltd - August 2024 88

	Contact Information
	Contents
	Preface
	Scope of Manual
	New in this Release
	Alerts
	Associated Documentation
	Publication Record

	Tutorial Section
	1 Getting Started
	1.1 Introducing TaskBuilder
	1.2 TaskBuilder Feature License
	1.3 Running a TaskBuilder Program
	1.4 Monitoring TaskBuilder Execution
	1.5 Trace Actions
	1.6 Troubleshooting

	2 Digital Inputs and Outputs
	2.1 Digital I/O States
	2.2 Using a Timer to Toggle the Output
	2.3 Toggle an Output Only When Digital Input 4 is Low

	3 Set Channel on Start-Up
	3.1 Example

	4 Select a Channel Using Digital Inputs
	4.1 Using Two Inputs to Select Two Channels
	4.2 Composite States
	4.3 Using Two Inputs to Select Four Channels
	4.4 Debouncing the Switch Input
	4.5 More on Composite States
	4.6 State Diagrams

	5 Drive a Digital Output Given an Alarm Condition
	5.1 Light a Lamp When the Base Station Front Panel is Absent
	5.2 P25 Major Alarm
	5.3 Raising a Custom Alarm
	5.4 Summary

	6 Select Squelch Mode Using Digital Inputs
	6.1 rx-squelch-mode
	6.2 rx-gate-state

	7 Select Tx Key Using Digital Inputs
	7.1 tx-key-operation
	7.2 tx-key-state

	8 Transmit Lockout
	9 Call Profiles and Tone Remote
	9.1 Tone Remote Input
	9.2 Call Profiles
	9.3 tone-remote-key-operation
	9.4 tone-remote-key-state

	10 Signal Path States
	10.1 tx-operation
	10.2 rx-operation

	11 High Availability Repeater
	11.1 Requirements
	11.2 Problem Logic
	11.3 Primary Repeater Definitions, States and Logic
	11.4 Backup Repeater Definitions, States and Logic

	12 Function Code Variables
	13 Subaudible Signals
	14 Tx Generators
	15 Good TaskBuilder Style
	Reference Section
	16 TaskBuilder Language
	16.1 Syntax Highlighting
	16.2 Names
	16.3 Keywords
	16.4 Comments
	16.5 Active Variables
	16.6 Composite Variables
	16.7 Timer Variables
	16.8 Counter Variables
	16.9 Standard Variables
	16.10 TaskBuilder Rules
	16.11 Events
	16.12 State Entry Events
	16.13 Actions
	16.14 Language Design Goals

	17 TaskBuilder Grammar
	18 TaskBuilder Inputs and Actions
	18.1 TaskBuilder Standard Variables
	18.2 Table of TaskBuilder Standard Variables

	19 TaskBuilder Alarm Names
	20 Specifications and Limits
	21 TaskBuilder Comparison With Task Manager
	21.1 Comparisons with Task Manager
	21.2 General Elements
	21.3 Task Manager Inputs
	21.4 Task Manager Outputs

	22 Change History
	Release 3.65
	Release 3.60
	Release 3.55
	Release 3.35
	Release 3.25
	Release 3.20

